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SPIN-LABEL OXIMETRY IN BIOLOGICAL AND MODEL
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Over the last two decades, spin-label oximetry methods were developed and applied to study oxygen consumption and
evolution in different biological and biechemical systems, as well as oxygen transport in better-defined model systems.
1 will briefly review the early history of spin-label oximetry in which the Biophysics Department of Jagiellonian Uni-
versity has been actively involved. Altheugh melecular oxygen is paramagnetic, the direct detection of oxygen in bio-
logical systems using the electron paramagnetic resonance technique is not possible. However, indirect methods exist
in which bimolecular collisions of oxygen with paramagnetic molecules alter the resonance chiaracteristics of the par-
amagnetic molecule. Previously, the term spin-label oximetry described the application of nitroxide radical spin labels
to oximetry measurements. This term should now be broadened to include any paramagnetic substance that is sensi-
tive to collisions with oxygen, because new, stable free radicals and solid-state paramagnetic probes have been intro-
duced, especially for in vive oximetry measurements. I will indicate applications of these new oxygen-sensitive probes.
Finally, I will describe the use of oxygen as a probe to study three-dimensional molecular organization and dynamics

in membranes.

INTRODUCTION

Applications of spin-label oximetry to biological
systems were first emphasized by Backer, Budker,
Eremenko & Molin (1977). They pointed out that
the effect of oxygen on the resolution of the proton
superhyperfine structure of spin label I (sce Fig. 1)
could be a useful oximetric method. Spin label II,
which was obtained from Rozantsev’s laboratory in
Moscow, was introduced in our department in early
1978 (Pajak, Cieszka, Gurbiel, Subczynski &
Lukiewicz, 1978). This spin label, later named
CTPO (Popp & Hyde, 1981), was first used by us
to measure oxygen consumption in cell suspen-
stons with special attention paid to cells containing
melanin (Pajak, Subczynski. Panz & Lukiewicz,
1979a; Pajak, Subczynski, Panz & Lukiewicz,
1979b; Pajak, Subczynski, Panz & Lukiewicz,
1980; Panz, 1979). At that time, we also performed
the first in vivo spin-label oximetry measurements
on an intact bean leaf (Cieslikowska, 1980). The
calibration curve was produced using parameter-
ization of superhyperfine structure of electron
paramagnetic resonance (EPR) spectra of CTPO
with the parameter o.=b/a (see Fig.2 and
Subczynski (1984) for details). Later, Sarna,
Duleba, Korytowski and Swartz (1980), introduced
a new parameter, K =(b+ ¢)/2a (see Fig.2),
which became widely accepted. Finally, Lai, Hop-
wood, Hyde and Lukiewicz (1982), presented

numerous calibrations of K as a function of oxygen
concentration, temperature, spin-label concentra-
tion, and microwave power. Because of its high
polarity, CTPO samples oxygen in the aqueous
phase. There have been few attempts to introduce
other spin labels for oximetry measurements that
use superhyperfine structure (Morse & Swartz,
1985; Chan, Glockner & Swartz, 1989), but only
CTPO (with the K parameter and Lai’s calibration
curves) has been widely accepted and used for
oximetry measurements in many laboratories.

OTHER SPIN-LABEL
MOLECULAR PROBES

The partially deuterated CTPO analog (spin la-
bel III) was described by Halpern at the 25th
Rocky Mountain Conference in August 1987. This
spin label has just two resolved superhyperfine
lines, which arise from the ring proton. This spec-
tral feature is used to distinguish broadening asso-
ciated with self-interaction from that due to envi-
ronmental oxygen (Halpern, Perik, Nguyen,
Spencer, Teicher & Lin, 1990). These authors also
report a 20-fold increase in the sensitivity of the
EPR spectrum to oxygen exchange broadening.
The spin label TEMPONE (spin label [V), is to
my knowledge the only one that shows no evidence
of proton coupling, and in water solution, pos-
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Fig. 1 Chemical structures of spin-label molecular
probes,

sesses very narrow EPR lines of 0.25 G, Narrower
lines of 0.15 G can be obtained after deuteration of
this spin label. TEMPONE was used to measure
oxygen consumption in biochemical reactions
(Reszka & Sealy, 1984; Kalyanaraman, Fcix, Sie-
ber, Thomas & Girotti, 1987) to record fast
changes of oxygen concentration during photo-
synthesis (Strzalka, Sarna & Hyde, 1986), oxygen
transport in hydrocarbons (Subczynski & Hyde,
1984), and intracellular oxygen concentration
(Wood, Dobrucki, Glockner, Morse Il & Swartz,
1989).

Recently, a new class of oxygen-sensitive mo-
lecular probes, named TRITYLS (structure V in
Fig. 1), were introduced (Andenkjaer-Larsen,
Laursen, Leunbach, Ehnholim, Wistrand, Peterson
& Golman, 1998). The minimum linewidth is ap-
proximately 25 mG. TRITYLS offers the possibil-
ity of an order-of-magnitude improvement in signal
to noise, spatial resolution, and physiologic sensi-
tivity of in vivo spectral-spatial EPR imaging.
Two-spatial-dimension images of a mouse tumor
were presented using this new type of stable free
radical (Halpern, Chandramouli, Williams, Barth
& Galtsev, 1998).

Fig. 2 The central field component of the EPR spec-
trum of the spin probe CTPO (1.1 - 107 M) in air-
saturated (1) and nitrogen-saturated (2) water at
37°C. Definitions of the a parameter and the K pa-
rameter are indicated.

BIMOLECULAR COLLISIONS

Applications of nitroxide spin labels and other free
radical molecules dissolved directly in investigated
systems can be considered molecular probe meth-
ods because every molecule senses collisions with
oxygen that depend on their local environment. If it
is possible to put a spin label at specific labeled
sites or in restricted domains such as membranes,
the bimolecular collision frequencies with oxygen
in these specific environments will be recorded.

The Smoluchowski equation forms the basis of
the molecular probe method:

w=47R{DSL)+ D(0,)f0,] m

Molecular oxygen is paramagnetic and during
collisions it affects spectral characteristics of the
spin probe. To measure the collision rate, an ex-
perimental observable, .., should be related to
the actual collision frequency, @

0y, = 4mpR{D(SL)+ D(0, )]0, ] @

Here, p is the probability that an observable event
occurs when a collision does in fact occur. For
Heisenberg exchange between spin labels and
oxygen, p= 1 (see Hyde and Subczynski (1989)
for details). It is this fact that is responsible for
making the method quantitative.

A useful simplification occurs by neglecting the
diffusion coefficient of the spin label, D(SL), rela-
tive to that of oxygen, D(O,):
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If this is possible, the experimental observable
yields the oxygen diffusion-concentration product,
D(0,)[0,]. The interaction distance, R (4 1o 5 A),
can in principle be adjusted to force the agreement
of D(O,) obtained from measurements of diffusion
against a concentration gradienl (macroscopic
diffusion) and measurements from the Smoluchow-
ski equation (self-diffusion) (Hyde & Subczynski,
1984; Subczynski & Hyde, 1984).

MICROSCOPIC AND MACROSCOPIC
SPIN-LABEL PROBES

The effect of oxygen on EPR spectral characteris-
tics of spin labels depends on the oxygen diffusion-
concentration product in the solvent surrounding
the spin labels. Spin labels dissolved in solvents
with high oxygen solubility and a high oxygen
diffusion coefficiemt will be more sensitive 1o
changes In oxygen tension. Hydrocarbons like
paraffin oil or hexane are such solvents: they dis-
solve oxygen 4 to 10 times better than water, while
diffusion of oxygen is about as facile as in water.

In 1984, wogether with Prof. Lukiewicz, we tried
to use this methodological approach to increase the
sensitivity of spin-label oximetry for in vive meas-
urements. First we used perdeutero N
TEMPONE solution in light paraffin oil injected
into the peritoneal cavity of a mouse (Fig. 3A).
However, the spin label leaked out of the oil drops
into the aqueous environment of the mouse body.
To protect the spin label from leaking and against
reduction, we enclosed the paraffin oil solution in a
gas-permeable TPX capsule. The TPX capsule was
placed in the peritoneal cavity of a mouse (Fig. 3B)
and in vivo oximelry measurements were per-

Fig. 3 Diagram tllustrations of in vive
oximetry measurements. (A) and (B).
Mice (2-3 weeks old, weight approx.
20 g) were inserted into a cylinder of
an L-band resonator 25 mm in di-
ameter and 30 mm long. (C). The

oxygen-permeable  teflon  coil  was
slipped into the peritoneal cavity of
the animal. EPR measurcments were
carried out using an X-band spec-
wometer with a glass capillary cross-
ing the spectrometer cavity.

formed at L-band using an EPR spectrometer with
a loop-gap resonator (Subczynski. Lukiewicz &
Hyde, 1986).

Another variation of this methodological ap-
proach for in vivo oximetry measurements is sche-
matically presented in Fig. 3C (Lukiewicz, Zar-
nowska & Lackowska, 1985a). An oxygen-
permeable teflon coil can be placed in the area of
interest in an animal body. A closed system of
oxygen-impermeable glass and rubber wbes with a
peristaltic pump is vsed for the circulation of the
filling solution. After about 30 min. the solution
(light paraffin oil containing the spin label
TEMPONE) is equilibrated with oxygen partial
pressure which is surrounding the tcflon coil. EPR
measurements are performed outside the animal, so
the size of the animal is not critical. The methods
mentioned above, which we can call the macro-
scopic approach in spin-label oximetry, were fur-
ther developed and applied to measure the steady-
state concentration of oxygen in solid tumors - a
subject of critical importance for radiation therapy
and experimental oncology (Lukiewicz, 1985;
Lukiewicz, Sochanik & Lukiewicz, 1985b).

A similar idea was used to develop oxygen-
sensitive microscopic spin-label probes. Here bo-
vine serum albumin (BSA)-coated light paraffin oil
particles containing cholestane spin label were
used (Ligeza, Wisniewska ‘& Subczynski, 1992;
Ligeza, Wisniewska, Subczynski & Tikhonov,
1994). Similarly, Liu, Greenstaff, Jiang, Suslick,
Swartz & Wang (1994), used BSA-coated hexane
particles containing stearic acid spin label. In this
way it i1s possible to isolate nitroxides from water-
soluble reductants and paramagnetic ions that
might interfere with spin-label oximetry measure-
ments. In these particles, spin labels are always
surrounded by the same hydrocarbon solvent,
which dissolves oxygen very well. Therefore, oxy-
gen partial pressure i1s the only factor that can in-
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fluence the EPR spectrum of the spin label in the
microscopic probe. Such microscopic probes (a
few micrometers in diameter) are readily and uni-
formly distributed within the sample, thus giving a
rapid response to changes in oxygen partial pres-
sure. All these properties of microscopic probes
make it possible to measure oxygen production and
consumption by chloroplasts in site and in vitro
(Ligeza ef al., 1994) as well as changes of oxygen
tension in skeletal muscle of the mouse in vive (Liu
etal., 1994).

Other microscopic solid-state probes have also
been used for oximetry measurements, such as

Fig. 4 Cross-secticnal drawing of
the DMPC bilayer includi=g
membrane modifiers (cho
terol (CHOL), zeaxanthin, ar
«t-helical peptide) and spin la-
bels. Locations across the
membranes are illustrated.

Fig. 5 Profiles of the oxygen transport pa-
rameter across DMPC membranes without
BR (Q), in reconstituted membranes of
BR/DMPC ratio of 1/40 (@, X), and in
purple membranes (A). Daa for SLOT
domain (@), and for bulk-boundary do-
main (X). Data obtained at 26°C. Ap
proximate locations of the nitroxide moie-
ties of spin labels are indicated. (Profiles
made on the basis of the data presented by
Ashikawa ef al.) 1994).

certain crystalline forms of lithium phthalocyanine
(Liu, Gest, Moussavi, Norby, Vahidi, Walczak,
Wu & Swartz, 1993), a derivative of coal termed
fusinite (Swartz, Boyer, Gest, Glockner, Hu, Liu,
Moussavi, Norby, Vahidi, Walczak, Wu & Clark-
son, 1991), and India ink (Goda, Liu, Walczak,
O'Hara, Jiang & Swartz, 1995). These probes were
used for measurement of oxygen partial pressure in
the tissues of intact animals (Swartz & Glockner,
1991) as well as an intact leal (Ligeza, Tikhonov &
Subczynski, 1997).
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Table I. Oxygen Permeability Coefficients
for Dilferent Membranes

the high gas permeability of TPX to our at-
tention. The importance of the TPX gas ex-
change sample cell o the development of

Membrane — Pm_l
(°C)  (emsT)
DMPC* 8 53
DMPC 25 105.0
DMPC 38 185.0
DMPC — 10% zeaxanthin 25 59.0
DMPC — 50% cholesterol 38 38.0
EYPC** 25 119.0
EYPC 40 201.5
EYPC — 109 zeaxanthin 25 88.0
EYPC — 50% cholesterol 40 734
CHO plasma membrane’ 37 42.0
Thylakoid membrane 20 39.5
SLoT* s 34.7
Purple membrane 35 21.3

spin-label oximetry has been very great.
Typical profiles of the oxygen diffusion-
concentration product (also called the oxygen
transport parameter) across fluid-phase dimy-
ristoylphosphatidylcholine  (DMPC) mem-
branes in the absence and presence of bacte-
riorhodopsin (BR) are shown in Fig. 5. Other
fluid-phase model and biological membranes
show similar, bell-shaped profiles with the
oxygen diffusion-concentration product in the
membrane center a few times greater than that
in and near the headgroup region. Membrane
modifiers (see Fig. 4 for their structures and
locations) affect oxygen transport within the
lipid bilayer differently in different membrane
regions. Cholesterol decreases oxygen trans-
port in the polar headgroup region and in
hydrocarbon near the polar headgroup region,
and incrcases it in the membrane center
(Subczynski, Hyde & Kusumi, 1989;
Subczynski, Hyde & Kusumi, 1991a). Polar
carotenoids (zeaxanthin and violaxanthin)
decrease the oxygen diffusion-concentration
product in saturated and unsaturated mem-
branes (Subczynski, Markowska & Sielewic-

* gel-phase membrane
#* egg yoltk phosphatidylcholine
" Chinese hamster ovary

" measurements for slow oxygen-transport domain in recon-

stituted membranes of BR and DMPC (BR/DMPC=1/40).

OXYGEN PERMEABILITY OF MODEL AND
BIOLOGICAL MEMBRANES

Spin-label oximetry makes it possible to measure
the transport of oxygen within and across lipid
bilayer model membranes and in the lipid portion
ol biological membranes. This approach can be
used to obtain the profile of the oxygen diffusion-
concentration product across the membrane be-
cause the nitroxide free-radical moicty of spin
labels can be located at different depths in the
membrane (see schematic, Fig. 4). In these types of
measurements, samples (liposome suspensions)
should be precisely equilibrated with the given
partial pressure of oxygen at defined temperatures.
This was possible with the use of capillaries made
of a plastic called TPX, which is permeable to
oxygen, nitrogen, and other gases and is substan-
tially impermeable to water (Popp & Hyde, 1981;
Subczynski & Hyde, 1981). Popp & Hyde (1981)
acknowledged Prof. Lukiewicz, who first brought

siuk,1991b). The effect is negligible in the
headgroup region and the strongest in the
membrane center. The transmembrane «-
helical peptide, Ac-K;LoyK>-amide, also de-
creases oxygen transport in the lipid bilayer,
however, its effect is minimal in the mem-
brane center and increases towards the head-
group region (Subczynski, Lewis, McEI-
haney, Hodges, Hyde & Kusumi, 1998).
Knowledge of the profile of the oxygen diffu-
sion-concentration product makes it possible to
calculate the membrane oxygen permeability coef-
ficient, P,, using the procedure developed by
Subczynski e al. (1989). Obtained data are col-
lected in Table 1. P,, depends on membrane com-
position. Cholesterol at high concentration de-
creases the value of P,, of model membranes by 3
to 5 times and polar carotenoids at 10 mol% by 2
times. The greatest effect is observed in lipid do-
mains crowded with integral membrane proteins.
The lipid domain of the purple membrane shows an
oxygen permeability coefficient about 6 to 10
times smaller than that is fluid-phase lipid bilayers
(Ashikawa, Yin, Subczynski, Kouyama, Hyde &
Kusumi, 1994). Evaluations presented by Subczyn-
ski, Hopwood and Hyde (1992), and Ligeza, Tik-
honov, Hyde and Subczynski (1998), show that
even with these low oxygen permeahility coeffi-
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cients, the possible oxygen concentration differ-
ences across the cell plasma membrane, the mito-
chondrial membrane, and the thylakoid membrane
at physiological conditions are very small
(0.012 pM, 0.12 pM, and | pM, respectively). The
overall conclusion of these studies is that mem-
branes are nol barriers to oxygen transport, and
oxygen concentration differences across mem-
branes at physiological conditions are negligible.

THREE-DIMENSIONAL DYNAMIC
STRUCTURE OF MEMBRANES AS
REVEALED BY THE STUDY OF
OXYGEN TRANSPORT

Molecular oxygen has a unique characteristic as a
membrane probe: its small size and appropriate
level of hydrophobicity allow it to enter the small
vacant pockets that are transiently formed in the
lipid bilayer membranes. Therefore, the molecular
collision rates between oxygen and nitroxide spin
labels placed at specific locations in the membrane
are sensitive to the dynamics of gauche-trany iso-
merization of lipid alkyl chains and to the struc-
tural nonconformability of neighboring lipids.
Using this approach, reconstituted model mem-
branes and biological membranes were investi-
gated, with special attention paid to the membranes
crowded with integral proteins (Ashikawa et al.,
1994; Kawasaki, Yin, Subczynski, Ohnishi, Hyde
& Kusumi, 1999) or single transmembrane o-
helices (Subczynski et al., 1998). A new pulse EPR
spin-labeling method was developed to detect and
characterize local domains in these membranes.
This method is based on variations of the local
oxygen transport parameter (oxygen diffusion-
concentration product) in various membrane do-
mains, thus called “the method of discrimination
by oxygen transport (DOT method).” More spe-
cifically, this method is sensitive to the product of
the (local) translational diffusion coefficient and
the (local) concentration of oxygen in the mem-
brane.

In reconstituted membranes of BR and DMPC,
the presence of a specific lipid region that appears
only in protein-rich membranes has been indicated
where oxygen transport is five times slower than in
the bulk-boundary domain (Fig. 5). This domain is
called the “slow oxygen transport (SLOT) do-
main,” and its oxXygen transport properties are
similar to those in the lipid domain of the purple
membrane (Ashikawa et al, 1994). The rate of
lipid exchange between the SLOT domain and the
bulk-boundary domain is slower than 10° to
10°s7", It is speculated that the SLOT domain

consists of lipids in contact with two proteins and
lipids in contact with protein and boundary lipids.
Alkyl chains and BR are closely packed in the
SLOT domain with few vacant pockets to allow
entrance and movements of even small molecules
such as molecular oxygen.

In the influenza virus membrane, two membrane
domains with slow and fast oxygen transport were
indicated (Kawasaki et al., 1999). A 16-fold dil-
ference in the oxygen diffusion-concentration
product was observed between these two domains.
The SLOT domain in viral membranes may be the
membrane region corralled-in the trimers of he-
magglutinin, in which oxygen transport is greatly
reduced.

In the case of membranes reconstituted with a
transmembrane o-helical peptide, Ac-KoLyKo-
amide, results from the DOT method indicated that
the peptide is highly miscible in the lipid bilayer,
even at high concentrations with any indications of
SLOT domains (Subczynski ef al., 1998).

It is concluded that molecular oxygen makes a
particularly useful probe for studies of molecular
organization and dynamics in protein-rich mem-
branes.

OXIMETRY MEASUREMENTS IN LIPID
BILAYER MEMBRANES—COMPARISON
WITH MOLECULAR DYNAMICS
SIMULATION RESULTS

The model presented on the basis of molecular
dynamics (MD) simulations splits the lipid bilayer
membrane into four regions, each of which has its
own special characteristics. It is stressed that the
exact locations of the boundary regions arc some-
what arbitrary, however, the qualitative idea of the
four-region model is considered to be applicable to
different bilayer membranes (Marrink & Berend-
sen, 1994). The first two regions belong to the
headgroup region of the membrane (low and high
headgroup density regions); the other two regions
describe the interior of the membrane (high and
low tail density regions).

On the basis of oxygen (ransport parameter
measurements, three regions of the lipid bilayer
membrane could be distinguished: the headgroup
region with a low oxygen diffusion-concentration
product; the near headgroup region (the alkyl chain
region up to the depth of ~ the ninth carbon) with a
low oxygen diffusion-concentration product; and
the central region where the oxygen transport pa-
rameter is a few times greater than that of the other
two regions (Subczynski e al., 1989, 1991a).
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MD simulation also indicated that small mole-
cules (smaller than benzene) experience enhanced
diffusion in the lipid bilayer membranes, and the
enhanced diffusion rate is a few times greater in the
bilayer center (Stouch & Bassolino, 1996). This is
also in agreement with oximetry measurements,
which show that oxygen diffusion in membranes is
as facile as in water (Subczynski & Hyde, 1981).

Diffusion of small molecules in membranes has
been related to the creation and movement of kinks
due to rapid gauche-trans isomerization of alkyl
chains (Triuble, 1971; Pace & Chan, 1982). The
idea of vacant pockets in the membrane presented
by Subczynski ef al. (1991a) is similar to these
kink models, but the vacant pockets cover a wider
range of packing defects in the membrane and
vacant pockets formed by a variety of mechanisms
contribute to the oxygen transport in the mem-
brane. Oxygen molecules jump from one pocket to
an adjacent one or move with the movement of the
pocket itself. These hypotheses are supported by
MD simulations, which shov that free voids exist
in the hydrocarbon interior o. the bilayer that are
commonly of a size large enough 10 accommodate
small molecules. These free voids are most com-
mon in the bilayer center (Stouch & Bassolino,
1996). Profiles of the oxygen diffusion-
concentration product reflect the distribution of
voids across lipid bilayers, which also confirms
that oxygen is a good probe of membrane organi-
zation,

Kusumi, Subczynski and Hyde (1982) showed
that oxygen diffusion in the fluid-phase DMPC
membranc is isotropic, based on measurements of
collision rates between oxygen and lipid-soluble
spin labels with a different orientation of the 7-
orbital of the nitroxide radical relative to the mem-
brane normal. This statement was the subject of
criticism because the membrane is described as an
axially symmetric anisotropic environment. MD
simulation of translational diffusion of NO in the
hydrocarbon region of the DMPC bilayer led to the
same conclusion—that NO diffusion in fuid-phase
membranes is isotropic (Pasenkiewicz-Gierula &
Subczynski, 1996). The calculated average coeffi-
cients of NO translational diffusion in both lateral
and transversal directions appear to be the same.
Similarly, the lateral diffusion coefficient profile of
water molecules in a DMPC bilayer obtained from
MD simulation was very similar to the transverse
profile (Marrink & Berendsen, 1994). These ob-
servations confirm the experimental statement that
diffusion of small molecules in the membrane
looks essentially isotropic.

Finally, I would like to point out that because
oxygen and NO are paramagnetic (oxygen has a

triplet ground state, while NO has one unpaired
electron making it a free radical), a similar ap-
proach can be used to study NO concentration and
transport in biological and model systems (Singh,
Hogg, Mchaourab & Kalyanaraman, 1994; Clark-
son, Norby, Smirnov, Boyer, Vahidi, Nims &
Wink, 1995; Subczynski & Hyde, 1998). It has
been shown that this method, called “spin-label
NO-metry”, is also quantitative, giving a local NO
diffusion concentration product (Lomnicka &
Subczynski, 1996; Subczynski, Lomnicka & Hyde,
1996).
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