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GRAVIOSMOTIC EFFECTS

MARIAN KARGOL, ARMIN KARGOL

Institute of Physics, Pedagogical University, 25-406 Kielce, Swigtokrzyska 15.

We present a physical interpretation of graviosmosis. Our analysis is based on various experimental studies, mostly by
means of volume flux measurements or interferometric studies. We describe the graviosmotic effect within the frame-
work of the Kedem-Katchalsky formalism. We discuss various rclated phenomena like: graviosmotic water uptake
against the gravity, graviosmotically induced water circulation and the asymmetry of graviosmotic transport.

INTRODUCTION

In membrane systems different transport processes,
called the membrane phenomena, may be observed
depending on physical and chemical properties of
the membranes and solutions they separate, as well
on existing stimuli (such as concentration gradient,
temperature difference, mechanical pressure or
electric potential difference). Some of them are:
diffusion, thermodiffusion, osmosis, thermoosmo-
sis, electroosmosis, anomalous osmosis, filtration,
reverse 0smosis, dialysis and generation of electric
membrane potentials.

There is also a group of membrane phenomena
gencrated by the gravity force, such as arc the
gravielectric cffects (Brauner, 1959; Custard &
Faris, 1965; Kargol, Ornal & Kosztolowicz, 1995)
and the graviosmosis (Kargol, 1971; 1978; 1992,
Przestalski & Kargol, 1972; 1987). When a system
is pr?:pcrly oriented relative to the direction of the
gravity force we observe certain polarization of
concentration. As a result so-called gravielectric
potentials (in case of the gravielectric effects) or
volume flows called the graviosmotic flows (in
case of graviosmosis) are generated.

This work is concerned with the graviosmotic
effects. In particular, we consider graviosmosis in
two-membrane systems and related effects such as
pumping of water to a certain height (against the
gravity), water circulation, asymmetry of gravios-
motic transport or its amplification.

Graviosmosis was first observed in 1971 (Kar-
gol, 1971; Przestalski & Kargol, 1972). From a
physical point of view the effect has been since
then a subject of several papers (Kargol, 1971;
1978; 1980; 1992; 1994, Przestalski & Kargol,
1972; 1976, 1987; Kargol, Ludwikéw & Przestal-
ski, 1976; Kargol, Dworecki & Przestalski, 1979,
Kargol & Dworecki, 1994; Slezak, 1983). It also
laid a foundation for so-called graviosmotic hy-

pothesis of xylem transport of water in tall plants
developed by Kargol and Przestalski (Kargol,
1971; 1978; 19Y2; Przestalski & Kargol, 1987).
This hypothesis postulates that water transport
along tracheal elements of xylem is generated not
only by transpiration-cohesion principle (as the
Dixon-Renner theory says) (Wilkins. 1970; Zieg-
ter, 1977; Zimmermann & Brown, 1971) or by the
root pressurc (Wilkins, 1970; Ziegler, 1977; Zim-
mermann & Brown, 1971), but also by gravios-
motic effects (Kargol, 1971; 1978; 1992; Przestal-
ski & Kargol, 1972; 1987).

GRAVIOSMOSIS. EXPERIMENTAL RESULTS

In order to give a simple illustration of graviosmo-
sis we consider a membrane system consisting of
two membranes M; and M, with identical transport
properties. In the Kedem-Katchalsky (Katchalsky
& Curran, 1965) formalism the properties of mem-
branes are described by the filtration (L), reflec-
tion (0), and permeation (@) coefficients. In the
system considered L, =L,=L, ©=0:=0, and
w=ay=w. The membranes M, and M, separate
three compartments A, C, and B, the latter of
which(B) is filled with a solution of concentration
Cp while the former two (A and C) with pure wa-
ter. It is clear that when the system is horizontal
(Fig. 1a) itis in an osmotic equilibrium. The effec-
tive osmotic pressures on both membranes (—oATl,
and oAlT) are equal in magnitude and henceforth
compensate each other. There are no net volume
flows (J,=0) as observed experimentally. Once we
turn the system to a vertical position (b), the equi-
librium is distorted and the system becomes os-
motically polarized by the gravity. A net osmotic
pressure difference All=cAIl,—cAlT, appears, thus
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Fig.2. Experimental seiup: My, My - membranes, A,
B, € - companments, Ca, Cp, Cc - concentra-
tions, J. - graviosmotic flux, Kp - capillary
(scaled), N - auxilliary vessel.
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inducing a certain net volume flow J,, called the
graviosmotic flux.

If the membranes M, and M, differ in the reflec-
tion coefficient (g,#0») then there is a non-zero net
volume flow J,, even in position (a) (see Fig. la).
In that case the osmotic pressures on both mem-
branes (—gAlT, and 6ATT) do not fully compen-
sate (even if AIT,= AIL). If the system is turned to
position (b) (see Fig. 1b) the volume flux changes
to a new value J,,. The difference J,y, — J,, 18 now
called the graviosmotic flux. It has been shown

Fig.l. Two-membrane system in

Qemyg,
position (a) and (b): My, M5 -

M, membranes, A, B, C - com
partments.  Ca, Ce, Cc
concentrations.
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cxperimentally (Kargol, 1971; 1978) the gravios-
motic fluxes appear also when Cy# C.

Graviosmotic fluxes can be relatively casily
measured by an experimental selup shown sche-
matically in Fig. 2. The measurement reduces then
to finding (by means of the capillary K,) the vol-
ume AV of solution that permeated in time Az
through membranes M, and M,, with active sur-
faces (S, = 5:=5). The flux can be found as:
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Fig.6. a. Interferogram (Kargol & Dworecki, 1994). b.
Model of a graviesmotic system (solutions with
densities increasing with concentration) - descrip-
tion in text.
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If the volumes of compartments A, B, and C are
sufficiently large, for given membrane active sur-
faces, the value of flux J, can remain constant over
a period of hours. We observe then a stationary
graviosmosis (Kargol, 1978).

Experimental results for the graviosmotic lux J,
obtained for different values of the concentration
Cy in the middle compartment show a simple pro-
portionality between /. and Cp. It is illustrated in
Fig. 3 plotted for a system of two nephrophan
membranes and water solution of glucose (Kargol,
1978). Concentrations are given in moles per liter
[M].

One might add herc that the flux J, is directed
upwards if the density of the solution uscd grows
with increasing concentration as happens, for in-
stance, for glucose solutions. On the other hand if
the density decreases with increasing concentration
(c.g. ethanol solution) the graviosmotic flux is
directed downwards, but its magnitude is still pro-
portional to the concentration cg in the middle
compartment. An cxample is shown in Fig. 4 for
two nephrophan membrancs and water solution of
ethanol (Kargol, 1978).

Experimental results mentioned above were
obtained for systems with compartment volumes
V4= Vg= V=200 em® and active surfaces of
membranes S, = $>=3.36 cm?’. These values guar-
antee that the observed graviosmosis is stationary.
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Fig 7. a. Interferogram (Kargol & Dworecki, 1994), b.
Model of a graviosmetic system (solutions with
densitics decreasing with concentration) - descrip-
fion in text.

A graviosmotic flux generated in a system wwhre
the compartments A, B, and C are relatively small
(for given membrane active surfaces) slowly de-
cays in time (J,(1)). That means the graviosmosis in
nonstationary. This 1s illustrated by experimental
graphs in Fig. 5 (Kargol, 1978).

The data was taken on a system of two identical
cellophane membranes with active surfaces S, =
=S,=3.36¢cm’, separating water solutions of
glucose, that is solutions with densitics increasing
with concentration. Volumes of all threc compart-
ments were here relatively small Vy=Vp=
=Ve=20cm’. Curve | in the figure shows the
dependence J,(f) of the graviosmotic flux on time.
As can be seen the flux decays monotonically in
time, apart from certain initial time interval after
the system was filled with solutions and placed
vertically. Additional measurements of concentra-
tions Cu(1), Cy(t), and CA1) were also taken and are
shown as curves 2, 3, and 4 (respectively) in Fig. §
(Kargol, 1978). One can notice that while concen-
trations Cp and C¢ change significantly in time, the
concentration C, changes much slower. This ob-
servation is justified in the remainder of this work.

THEORETICAL MODELS. PHYSICAL
INTERPRETATION

Already the first attempts at explanation of grav-
iosmosis were based on the hypothesis of Kargol
and Przestalski that the phenomenon is a result of
the gravity force altering the so-called near-
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membrane layers (Kargol, 1971; Kargol, 1978;
Przestalski & Kargol, 1972), that is their thickness
and coneentration difference across them. The idea
has been subsequently developed. Recently thor-
ough investigation of these layers formed in the
vicinity of membranes was performed using inter-
lerometric technique (Kargol & Dworecki, 1994).
Data concerning the layer thickness and the con-
centration profiles within the layers were obtained
and sample results, reproduced from (Kargol,
1994; Kargol & Dworecki, 1994), are presented in
Fig. 6a and 7a.

The former shows a system with the middle
compartment filled with the water solution of glu-
cose and the outer ones — with pure waler. In the
latter case the solution used in the middle com-
partment was that of cthanol (i.c. with density
decreasing with concentration). As previously the
outer parts were filled with pure water. Noticeable
bending of the interference bands near membranes
marks the extent of the near-membrane layers.
Results of this study (Kargol, 1978) led to a devel-
opment of two theoretical models for graviosmotic
systems (shown in Fig. 6b and 7b) with solutions
whose densities increase (Fig. 6b) or decrease (Fig.
7b) with concentration (Kargol, 1994; Kargol &
Dworccki. 1994).

Let’s consider the model in Fig. 6b first. We
assume that C,> C,, and C,> Cy,, where C,, G,
and C,, denote concentrations in the middle (B),
the upper (A), and the lower (C) compartments,
respectively. The interferometric studies (Kargol &
Dworecki, 1994) point to the existence of four
near-membrane layers, two ([, and [y) in the

vicinity of the upper membranc (M;) and two (I,
and I,5) on the lower membrane (M,). The layers
formed on both sides of membrane M, are stable
and their thickness grows in time (Kargol. 1978).
This can be explained by looking at the diffusion
of solute molecules from solution C,, across meim-
branc M, to solution C,,. Since the solute mole-
cules leave the layer Iy its density is lower than

the bulk solution C, in the middle compartment.
Thus the layer is stable under the influence of the
aravity force. On the other side, the molecules that
left Il and permeated across the membranc ac-

cumulate in the other layer I, above the mem-

brane. The density here becomes higher than the
bulk solution in compartiment A. The layer is again
gravitationally stable. The interferometric studies
(Kargol & Dworecki, 1994) show that the thick-
ness of both layers is relatively large and grows in
time. As a result the concentration difference
AC;, =C[—CJ., (where C. and C;. are the

g

concentrations on the surfaces — see Fig. 6b) on
the membrane decreases to very small values.
Similarly decays the osmotic pressure:

ATl = RT(C! ~C?,),

where R is the gas constanl and 7 - the tempera-
ture.

Quite different is the situation in the vicinity of
the lower membrane (M,). Here, as the solute
molecules leavce the layer [, the density within the
layer becomes lower than the bulk region (B). The
layer is henceforth unstable and is continuously
being destroyed by upward convection currents
generated by the gravity (see Fig.6b). The mole-
cules, in turn, permeate across the membrane to
layer /, under the membrane. thus increasing den-
sity there. Since the density in layer [, becomes
larger than in the bulk solution in compartment
(C), the layer is again unstable. Again, the gravity
generates convection currents KK, this time di-
rected downward. Thesc convection currents result
in both layers /5 and !, being very thin and con-
centration profiles across them show very little
variation. In other words, the solutions separated
by membrane M, are well mixed by the convection
currents. The concentration difference
C; =Cl—Cj, (where C; and Cj, are the

"oy
concentrations on the membrane surfaces) across
M, is therefore relatively large, so is the osmotic
pressure:

ATT

e =RT(C, —Cpy).

Presented considerations arc confirmed by recent
interferometric  studies (Kargol & Dworecki,
1994), In summary: formation of stable and unsta-
ble near-membrane diffusion layers in a gravios-
motic system means that in the field of gravity the
system becomes polarized in concentration. As a
result graviosmotic flows are generated. They are
directed upward as AT, is relatively large while

AT}, quickly decays to near zero (Kargol, 1979;

Kargol & Dworecki, 1994).

Fig. 7b shows a model of a graviosmotic system
with solutions whose densities decrease with con-
centration. It can be analyzed in an analogous way
so we do not reproduce all details. Let's only say
that if C, > C,, and C, > Cy,, then two thin unstable
layers (£, and [z) form in a vicinity of the upper
membrane M;. On the other hand the lower mem-
brane M, is surrounded by stable layers [, and [z
with relatively large and increasing in time thick-
ness. Fig. 7b shows the details of the model and
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Fig. 7a is the corresponding experimental inter-
ferogram.

Now it is casy to see that there is a significant
concentration difference (AC,, =C/-C.), and

henceforth a  significant  osmotic
A7, = RT(C-C ), (where C7, C,

o

pressure
are the
concentrations on both surfaces of the membrane)
across the upper membrane. At the same time the
concentration difference (AC), = C]—C}, ) on the
lower membrane is small, as is the osmotic pres-
sure which can be written as:

AW, =R =CL)

where: C”, CJ are the concentrations on both

surfaces of the lower membrane.
Consequently, the graviosmotic flux is directed
downward.
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Fig.11. A column of three graviosmotic system con-
nected in serdes: [ 11 11T - graviosmotic systems,
H, hy, hz, hs - heights of water elevation (H =y +
Iex + I3).

TRANSPORT EQUATIONS

Graviosmotic flows can be described quantitatively
using the so-called practical Kedem-Katchalsky
equations (Katchalsky & Curran, 1965). They have
the form:

J,=L,oAT+L AP, (1)
j. =—wATl+(1-06)CJ,, (2)

where: J, is the volume flux. j, - the solute flux,
L, — filtration coefficient, o - reflection coefficient,
w- permeation coefficient, Al - osmotic pressure,
and AP - mechanical pressure difference.

Quantities AT and C are given as:

Al =RT(C,-C,) and
Cz == C1

(5. %
lll"c'rl'

E: (3)
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where C) and C, are the concentrations, R - the gas
constant, and T - temperature.

One can show that for small concentration dif-
ferences (C,—Cy) the latter formula simplifies
(Kargol, 1996) to:

C=05(C,+C,).

Stationary graviosmotic flows

We consider the model shown in Fig. 6b. It rep-
resents a graviosmotic system with solutions whose
density grows with concentration. We assume
C,> C,, and C,> Cy. As remarked graviosmosis is
stationary if the compartment volumes Va, Vg, and
V¢ (and therefore solution volumes) are relatively
large for given membrane active surfaces. We also
assume that both membranes M; and M, have
identical active surfaces §; = S, =S, but they differ
in filration (L, # L), reflection (o) # 0y), and
permeation (@ # @) coeflicients,

According to the KK formalism we have the
following equations for the volume fluxes across
both membranes of the system:

4 :L,,iatRT(C.:L- _C:)"'L,u(ﬁ-. g 430 | (4)
Ja= L;_ﬁdzRT(C; _C::; y—L, (B, =Fp) (5)
where: P, P,, and P, are mechanical pressures

(see Fig. 6b).

In a stationary state the fluxes J,, and J,; are

constant in time and equal:

Jy=J4,=J, =const (6)

We can eliminate the unknown concentrations C;
and C), from Eq. (5) and replace them by C, and

Cy, using Eq. (2) which, when written for mem-
brane M,, has a form:

Jun ==,RT(C, —C )+ (1-0,)CJ,,,

(7
where j,, is the solute flux through M,, and
C =05(C, +C},).

We treat membrane M, and the adjacent layers /,
and [, as a triple membrane. If the layers are as-
signed the permeation coefficients @, and oy then
the composite triple membrane has a permeation
coefficient given as (Kargol, 1994, 1996):

00,305

W, = ; ®)
00+ 0,0, +0,0,

The solute transporl equation across the triple
membrane can be henceforth written as (Kargol,
1994):

ji =~0.RT(C,~C,)+(1-0,)C ] ,. ©)

where 55 =05(C, +C,)

If the concentration drops within layers [, and [
are equal or nearly cqual, it is easy to show that the
quantities C and C, are equal or very closc
(ES =C ). Also noticing that in the stationary state
Jsm=lss» from Egs. (7) and (9) we get:

w

L (C, —Cy). (10)
W,

c-C, =
Eq. (5) can then be rewritten as:

J,=L,0, 2— RT(C, ~Cy)—L,, (B, —P).or

J =L, 0, RT(C,—C))—L,(F,—F) (1)
where
(0]
0, =—0,. (12)

The quantity o, is called a pseudocoefficient of
permeation for the triple membrane. It can be
rather easily determined experimentally (Kargol,
1996).

Solving the system of Eqs. (4), (6). and (11) we
get the following expression for the stationary
graviosmotic flow:

I.=L[o,RI(C, —C.)~aRT(C, —C, )y-(F,=F)]
(13)

where L=L,L(L, +L,)".

Interferometric  studies (Kargol & Dworeckl,
1994) and measurements of volume flows (Kargol,
1978) indicate that (C,-C,)> G(C[-C,,).
Therefore the second term in Eq. (13) is negligible
compared to the first and we get:

1,=Le RT(C,—C,)—L(F,—B)] (14)

This approximation is crucial for the analysis since
the concentrations C,” and C,,” are also unknown,
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but Eq. (4) cannot be modified as we did with Eq.
(5).

Eq. (14) is the stationary graviosmotic flow
equation sought after. If in addition, we put P,=P,,
we gel:

J,=Lo,RT(C, ~C,,) (15)

Experimental studies (Kargol, 1978, 1994) show
that both the above equations satisfactorily de-
scribe the graviosmotic flux. It can be seen in Fig.8
and 9. Curve 1 in Fig.8 is experimental and curve 2
is obtained from Egq. (15). Similarly, curve 1 in
Fig.9 shows the experimental dependence Ji(cy)
while curve 2 is hased on Eq. (15).

Finally, returning to the model system (Fig.7b)
with solutions whose densitics decrease with con-
centration, we can derive the following analogue of
Eq. (14) (Kargol, 1994):

1. =Lo RT(C,~C,)-L(P,—P)] (16)

e

@, ; ;
where ¢, =—*0, is the pseudocoefficient of
,

membrane M.

Nonstationary graviosmaotic flow

Our analysis of nonstationary graviosmotic flows
is based on the model shown in Fig.6b. Contrary to
the previous section we assume that the volumes
V4, Vi, and Ve are small for given active surfaces
of membranes M; and M. In this case the concen-
tration difference (C,~Cy,) on the lower membrane
M, and the adjacent near-membrane layers [, and
I.g signilicantly decays in time as a result of the
solute flow j., (sce Fig.6b). Henccforth, the grav-
iosmotic [low also decreases in time (J{f)). The
observed graviosmosis is therefore nonstationary
(Kargol, 1978, 1994). Our goal is to find an ex-
plicit dependence:

AC, = fu),

where AC,, =C_ -C,, .

We assume that initially (r = 0) the concentration
difference between compartments B and C is:

Acma - an - C,r;u

The amount of solute (in moles) that permeates
across membrane M, and the layers [, and [ in
time dr equals dm. The corresponding changes in
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concentrations in compartments B and C are there-
fore:

dm
C;; = CREJ _V_ 4
B
din
C!#‘, = C_,L,h +_|;_.-
(

Assuming Vg = Ve = V we obtain:

AC AC 2dm

P e 1 1%

(17
We can then write:

2dm
d(ac, )= ACJF(I -AC,, = v

where d(AC,,) is the change of concenuration dif-
ference between B and C occurring in time dt.

Recall the definition:

_dm

Ju = S
Then Eq. (9) can be rewritten as:

dm =-o,RTAC ;, Sdt +(1-0,)C J ,Sdt. (18)
As the flux J.» is nearly equal to the graviosmotic
fMux J,, then after taking into account Eq. (14). the

above Eq. (18) has the following form:

dm=SIAC, (-o,RT+(1-0,)C.0 RTL
~(1=0)C,L(P, - B,)d.

From this:
M—,m=—2£(aAC‘,x+b)de', (19)
V V
where:
a=-0RT+(-0,)Co RIL L , (20)
b=-(1-0,)C,L(P,-P,) . 1)
From Egs. (17) and (19) we get:
dAC
e BRS¢ (22)
abCyp +b ¥V
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Integration of (22) yields:
L In(aAC e +b) = %m 23)
a

With the above mentioned initial condition the
integration constant equals:

~1 In{aAC
a

ago +0)

alC, +b 28at
=ex
aAC,,+b V
From this formula we can find an expression for
ACy, as a function of time. Explicitly:

. b 28ar) b
A(,dx =(CX_C1&):(ACJHU+'E]6)‘P( Va ]—;

(24)

Substituting Eq. (24) to Eq. (14) we finally get
(Kargol, 1994):

e Lcr,;'e;r"[(,aq&,U +£}3XP[ E }-E]
a 14 a
—-L(P, - F;),
(25)
where L =L, L (L, +L,)"

The above equation describes quasistationary
graviosmotic  flows. If for simplicity we put
(P,—P =0 then it reduces to:

J, = Lo, RTAC,, exp[ 25at ] (26)
Il we also assume (Kargol, 1994):
Fo,RTAC,|> [0-0.)C.,| , 27

then the term (I-O‘z)a.}l, in Eq. (9) can be ne-
glected. Therefore formulas (20) and (21) become:

g=—w RTand b=0.

Thus we obtain the following simplified form of
Eq. (25) (Kargol, 1978, 1994):

Jy = Lo RTAC,, exp{—zl/—',gwaTf) (28)

Eqs. (25) and (28) give a fairly good description of
graviosmotic flows as confirmed by experimental
data (Kargol, 1978, 1994). Sample results are
presented in Fig.10. Curve 1 in Fig.10 shows the
experimental results obtained using the setup as in
Fig.2, while curve 2 was calculated using Eq. (28).
Both graphs refer to a graviosmotic system of two
identical cellophane membranes with the middle
compartment (B) filled with the water solution of
glucose and the outer ones (A and C) - with pure
water.  The  compartment  volumes  are
Vi=Vp=Ve=20 cm® and the active surfaces
§=5,=5=336cm’

Graviosmaotic effects

Graviosmotic water uptake. Experimental  stud-
ies (Kargol, 1978, 1992, Przestalski & Kargol,
1987) show that a graviosmotic system is capable
of pumping water up to a certain height h. The
height can be measured or calculated from Eq.
(14). If we put J.=0 and (P,—Pg4) =pgh, where p is
the density and g - the acceleration of gravity, we
get:

o, RT

h=——
pg

(C,~Cy) (29)

As can be seen, the height h 1s determined by the
concentration difference (C,—Cy,). It has been
shown that a column of such systems connected in
series can pump water up to a total height:

H=h+hy+h+ ...

where hy, hy, hs,... are pumping heights for individ-
val systems in the column, respectively.

Fig.11 shows such a column composed of three
graviosmotic systems. It is worth noticing that such
graviosmotic transport, albeit generated by the
gravity, is directed opposite to the gravity force.

Graviosmotically generated water circulation.
Graviosmotic circulation of water can be observed
if the outer compartments (A and C) of the grav-
iosmotic system are connected by a pipe R (Kar-
eol, 1978, Przestalski & Kargol, 1987). It is shown
in Fig. 12 where the arrows mark the direction of
waler transport. Volume of circulating water A}

(in volume units) is given as:
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Fig.12. Graviosmotic circulation of water. My, My -
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Fig.14. Plats of relationships: J,,(Cy)e, =0

curve 1 and J,,(C, ). — curve 2.

AV, = LRTo (C, —C,)SAt, (30)

where: L =L,L, (L, +L,)", Cs Co — con
centrations, § — active surface of hoth membranes,
Ar— time, 6, — pseudocoefficient of reflection.

Eq. (30) as well as experimental studies (Kargol,
1978, 1992, Przestalski & Kargol, 1987) show that
a parallel connection of two such graviosmotic
systems as shown in Fig.13 (which effectively
increascs the active surfaces S of membranes)
results in appropriate increase in the amount of
circulating water. If the two connected systems are
identical then AV, ,=2AV,..

Amplification of graviesmotic transport. Ampli-
fication of the graviosmotic transport occurs if a
three-component solution is used instead (Kargol,
1978, Kargol et al., 1979). Specifically we mean
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Solution Solution R
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Water AV, Water 4
]

Fig.13. A system of two graviosmotic units con-
nected in parallel.

Jox 10° [mis]
9

-90° 0° +90°

Fig.15. a. Graviosmotic system positioned at angle o
with respect to the vertical. b. Dependence J.(g).

here a solution whose density increases with con-
centration of one of the solutes but decreases with
the concentration of the other. A good example Is
the water solution of glucose and ethanol.

I order to explain this phenomenon let us con-
sider a graviosmotic system where the middle
compartment (B) is filled with the water solution of
glucose (i.e. a two-component solution) and the
two outer compartments (A and C) - with pure
water. As mentioned earlier in this work the grav-
iosmotic flux J,; depends linearly on the concen-
tration C, of glucose in compartment B, as illus-
trated by curve 1 in Fig.14. That is: the change of
graviosmotic flux AJ,; generated by a small change
in concentration AC, is relatively small and the
same in the entire range of concentrations.
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AP =E—FE=pgh
(A)
(B) i
Ce Pr _COI_ _ﬁ i, M I\P
M | }AX,

Fig.16. The membrane system: M - membrane, A, B
- vessels, Coy, Cr, G - concentrations. Py, P, -
mechanical pressures, K, - capillary, Juy, jor -
fluxes, KK - convection flows.

Cor» Cor» Cr [M]
7
0l —— e - IIT -
—_
T
009}
0 98 196 294 AP-107[Nm?]

Fig.18. Relations: Cn(AP) - curve | and C,'(AP) -
curve 2, for the cuprophan membrane and vitamin
B-12.

The situation is quite different if the solution of
glucose in compartment B also contains a certain
constant amount of ethanol (its concentration
C.=const.). An analogous relation between the
graviosmotic flux (J,5) and the glucose concentra-
tion C, is shown as curve 2 in Fig.14. One can
notice that changes AJ,; of the flux caused by
similar concentration changes AC,, vary in different
concentration ranges. Moreover, AJ,; can be many
times larger than AJ,;. In other words, the system
has amplifying properties. As a measure of these
properties we introduce an amplification coeffi-
cient K defined as:

3D

®)
o e B
| \ 'Jw LI
= |l |
T
)

Fig.17. The fluxes through a membrape M and near-
membrane layers Ax - description in text

It has been shown that in a system of two nephro-
phan membranes a maximal value of this coeffi-
cient can reach K =5.

Curve 2 also indicates that not only the value but
also the direction of the graviosmotic flux I,; may
be changed by a monotonical variation of
concentration C,. This observation is important for
the graviosmotic hypothesis of xylem transport of
water in plants (Kargol, 1992). Such regulatory
and amplification affects also apply to water
circulation and uptake mentioned earlier.

Transport asymmetry. Graviosmotic transport in
systems of membranes differing in transport
parameters (L, # L,, 01# 03, w;# ) may exhibit
certain asymmetry. Let us consider a system filled
with solutions of concentrations such that
C,>C,=Cy=Cy and whose density grows with
concentration. If in the system the membrane M, is
above M; then a flux J,,, will be generated. When
the system is reoriented so that M, is below M,
then we will observe a flux J,;, of different magni-
tude. In both cases, nevertheless, the flux is di-
rected upwards. If the mechanical pressures are
kept the same for both positions of the system we
can write, according to Eq. (15):

g, = Lt:i'_\zRT(C:r -C,) (32)
and
Jop = LO'.,RT(Cg -Cy), (33)

where o,;, 0;; are the pseudocoefficients of reflec-
tion for the lower membrane (membrane M; in
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position (a) and membrane M, in position (b)).
One can immediately see:

N:if-:Eizﬁ;tl.

J, O (34)

&1

This quantity N is called an asymmelry coefficient
and is determined by the values of reflection pseu-
docoefficients ¢, and G, (Kargol, 1980).

Graviosmotic transport as a function ef incli-
nation of the system. Graviosmotic flux J, (as well
as the amount of circulating water) depends on the
inclination ¢ of the system to the direction of the
gravity force. A gystem, shown in Fig. 15a, was
placed at different angles and the graviosmotically
generated flux J, was measured. A sample plot of
the relation J,=f{¢) is presented in Fig.15b.

The flux J, is maximal for =0 and decays to
zero as o goes to ¥90°. This fact has some signifi-
cance for the graviosmotic hypothesis (Kargol,
1992). It also leads to certain conclusions con-
cerning possibility of graviosmotic mechanisms in
biological systems (Kargol, 1992).

Reverse osmosis modified by the gravity force. A
process in which a mechanical pressure difference
forces solute transport across a membrane against
the osmotic pressure is called reverse osmosis. It can
be realised both for solution well mixed by some
mechanical devices and for solutions weakly mixed.
In the latter case we can distinguish within the solu-
tions separated by a membrane relatively large re-
gions which are well mixed and rather thin layers
adjacent to the membrane where mixing does not
oceur (Dworecki, 1995, Kargol, 1994, 1996, Kargol
& Dworecki, 1994). If there are concentration gradi-
ents across the layers we treat them as the near-
membrane diffusion layers and assign permeation
coefficients to them, In the present work we consider
such case of reverse osmosis in a system with solu-
tions weakly mixed, or precisely, mixed only by
convection flows generated by the gravity. Hence
the title of this section.

A model system is shown in Fig. 16 (Kargol
1999). It consists of a horizontal membrane M with
transport parameters L,, 0, and @, separating two
compartments: A (the lower) and B (the upper).

We assume that the former is relatively large and
is filled with a solution of concentration C,, the
density of which increases with the concentration.
The latter vessel (relatively small) is initially empty.
Since there is a volume flux J,,, caused by the hydro-
static pressure difference AP =P, — P,= pgh, this
small compartment B fills with a solution of con-

centration Cp, at some later time. We consider the
case when the solution in A is not stirred mechani-
cally.

If the reflection coefficient o of the membrane is
larger than zero (o>0) then we get C> Cy.
Moreover, as the process continues, the con-
centration of the solution near the lower surface of
the membrane increases. On the membrane surface it
reaches a certain value C, > C, . The concentration

gradient across the membrane equals then AC, =
= C —Cg, or in other words there appears the

osmotic pressure difference:
All, = RT(C, - C, ) <AP.

The above inequality means that the reverse osmosis
occurs in the considered system.

As a result of the increase in concentration on the
lower surface of the membrane a solution layer with
density larger than ¢, forms there. This layer is
unstable in the gravitational field. Once its thickness
exceeds a certain value Ax, convection flows KK
are generated, as shown in Fig. 16, These convection
flows tend to destroy the layer, but at the same time
it is rebuilt by the continuing reverse osmosis. A
stationary state is eventually reached, where the
thickness of the layer is relatively small
(Ax=0.5-10" m), as found in experimental studies
of such layers done using the laser interferometry
technique (Dworecki, 1995, Kargol, 1996).

Fig.17 represents a "close-up” of the membrane M
and its near-membrane layer Ax, with the arrows
indicating the {luxes permeating through the system.
We now concentrate on those fluxes.

There are fluxes J,,, and j,, through the membrane
due to the hydrostatic pressure difference AP, and
the osmotic pressure difference Al = RT(C —C,,)

across the membrane. In the Kedem-Katchalsky
formalism they are given by:

Jow = LJAP=ORT(C! ~C,)1. (35)

Ju =ORT(C ~Cy)+(1 —a)%m- 36)

There is also a volume flux across the near-
membrane layer, denoted J,a.. In the stationary state
both volume fluxes are equal:

JWJ'I =JAx - (3?)

The symbol ;¢ denotes the flux of the solute carried
by J,a. within the layer. It equals:
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(38)

ar

A part of this flux, denoted j,,, pcrmeates across the
membrane M. The remainder is "reflected" from the
membrane, provided its reflection coefficient o is
larger than 0. We have then:

I S+ o (€
where j,, Is the rejected flux.
Since there is a concentration  gradient

AC, =(C, —C.)within the layer Ax, then the
diffusion flux j,; in the layer (see Fig.17) is given by
the equation:

. D __,
Joa = E(C“_ -C,), (40)

where D is the diffusion constant.
This [lux is equal in value 1o the flux j.
Therefore:

D
i, =—I(C -C 41
Juo Ax( . —C) @1
From Egs. (35) and (36) we get:
Jun @RT(C, _(:‘”) O ok +Co
o LJAP=GRT(C!-Cy))] 2
(42)

This ratio has a physical interpretation. Namely let's
write, following (Katchalsky & Curran, 1965):

Sy =TIVt LV

w ES

(43)

where: j,, j, are the fluxes, ¥, andl ¥, — the molar

volumes of water and the solute. In our notation (cF.
Fig.17) this equation has a form:

Jl'ﬂ] = .iwml_lll +J\m;_\ (44)
The fluxes J,,, and j,, can be written as:
Am
.m = 45
J o (4s)

Am
j o=— 46

where: Am,, Am, are the masses of water and the
solute, § — the membrane active surface, and Az
the time.

One then finds (Kargol, 1997):

J Am_ Am
B T G 47
G AWV +AmV. ¥ ' “n

whow

where V denotes the total volume.
Taking the above equation into account we can
rewrite Eq. (42) as:

CURT(C\:—C}”) +(]_0,)Cr+c(li_
LIAP—GRT(C, ~C)] 2
(48)

T

Moreover, from the Egs. (35), (36), (38), (39), and
(41) we get:

ORI ~Co) +1-0) - L, 1P~ RTIC ~C, )

C+C D
=——* L [AP-0RTC, ‘“Cm)]"E;(C: =6}

(49)

The Eqs. (48) and (49) constitute a system of two
coupled quadratic equations in variables C,” and Cy,.
Values of Ar can be measured using the inter-
ferometric technique. As finding an analytical
solution proved to be too cumbersome, we solved it
numerically for different values of the mechanical
pressure gradient AP (from the interval 0 < AP <50
x10* Pa). Sample results are shown in Fig. 18. Curve
| is the relation Coi(AP) while curve 2—CI(AP).
Both were obtained for a cuphrophan membrane and
solutions of vitamin B-12.

CONCLUSION

In this work we presented results of our experi-
mental and theoretical studies of graviosmosis and
related effects. The main conclusions are the equa-
tions describing stationary and nonstationary
graviosmotic transport. These equations open new
possibilities for further research. Namely, they
allow study of graviosmosis from a point of view
of energy conversion. Our interest in this stems
from the fact that graviosmotic transport takes
place against dissipative forces (viscosity forces)
but also against external forces. A graviosmotic
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system is therefore capable of doing both dissipa-
tive and utility work. Hence, graviosmosis can be
viewed as one of methods for conversion of free
energy of solutions with different concentrations
into useful work (Kargol, 1990). One might em-
phasize that graviosmosis, which is generated by
the gravity, in fact generates volume flows (grav-
iosmotic flows) which can be directed against the
gravity. One might suspect that a gravisomotic
system could satisfy criteria for an anti-gravity
machine (Myslicki, 1963).

Equations presented in this work allow analysis
of energetic aspect of graviosmosis (following an
analytical procedure for osmotic-and-diffusive free
energy conversion (Kargol, 1990)), and in par-
ticular validation of the above hypothesis. Our
interest in energetic aspects of graviosmosis is
however restricted to biophysical considerations.
In particular, a new biophysical theory (gravios-
motic theory) of xylem water uptake in tall plants
was developed based on graviosmosis (Kargol
1978, 1992, Przestalski & Kargol 1987).
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