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A new class of cavity resonators for use in EPR spectroscopy has recently been introduced by Mett, Froncisz and Hyde 
(Rev. Sci. Instrum. 72, 4188, 2001) that oscillate in what were termed “uniform field” modes. In these cavities, the RF 
magnetic field is uniform along an axial sample tube. The present paper is a theoretical analysis of flat aqueous sample 
cells in the uniform field resonator designated TEU02, which is an analogue of the widely used rectangular TE102 cavity. 
A full wave solution in the presence of sample loss was found. Samples that saturate with the available RF magnetic 
field and those that do not are considered. A geometry is described that requires four times more sample than in a con-
ventional cavity, and yields three times higher EPR signal intensities for saturable samples such as spin labels. It was 
concluded that not only is the quality of the EPR data improved in these resonators because the RF field is uniform over 
the sample, but also the signal-to-noise ratio can be better. 
 

INTRODUCTION 
 
Axially uniform resonant cavity modes for use in 
electron paramagnetic resonance (EPR) spectros-
copy were recently introduced from this laboratory 
(Mett, Froncisz & Hyde, 2001). The commonly 
used cylindrical transverse electric TE011 and rec-
tangular TE102 modes were considered. In the 
cylindrical and rectangular mode geometries, the 
sample is along the axis of the cylinder, dielectric 
disks of 1/4 wavelength thickness are placed at 
each end wall, and the diameter of the cylinder is 
set at the cutoff condition for microwave propaga-
tion in cylindrical waveguide at the desired mi-
crowave frequency. It was shown theoretically and 
experimentally that the microwave magnetic field, 
and therefore the curl of the electric field, is uni-
form along the sample in the region between the 
disks and that the resonant frequency is independ-
ent of the length of the cylinder. Uniformity of the 
microwave field over the sample is highly desir-
able in EPR spectroscopy. The rectangular TE102 
geometry is analogous, noting that the microwave 
field is uniform in a plane. The new microwave 
modes for the cylindrical and rectangular geome-
tries were designated TE01U and TEU02, where U 
stands for “uniform.” 
 The present paper is concerned with aqueous 
EPR sample geometries in axially uniform rectan-
gular geometries. We consider flat-cell samples of 
various cross sections extending the length of the 
resonator. It is a theoretical paper employing ana-

lytical solutions of electromagnetic field distribu-
tions at X-band (9.5 GHz), extending the work of 
Mett et al. (2001) to the flat-cell geometry. 
 The earliest discussion of aqueous sample-cell 
geometries seems to be that of Hirshon and Fraen-
kel (1955). Stoodley (1963) wrote a seminal paper 
on the subject following the treatment of EPR 
sensitivity of Feher (1956). Stoodley considered 
full-wave solutions of fields in the presence of 
sample in the limit of lossless sample [Im(εs) = 0] 
and compared the results to the unperturbed field 
or “empty cavity” limit, also subsequently dis-
cussed by Wilmshurst (1967). Stoodley found that 
differences in predictions of these two limits were 
small – on the order of several percent. Our work 
extends these results to include the full wave solu-
tion in the presence of sample loss and compares 
the TE102 mode to the TEU02 uniform field mode. 
 In retrospect, Stoodley’s paper was flawed by 
failing to recognize that differing sample cell ge-
ometries are required depending on whether or not 
the EPR signal can be saturated with the available 
microwave power. Hyde (1965) introduced a gen-
eral system of sample classification, asking three 
questions: does the EPR signal exhibit microwave 
power saturation at the available incident power, is 
it limited in size or volume, and does it exhibit 
dielectric loss? He suggested that EPR sensitivity 
analysis ought to be carried out for each of the 
resulting eight classes of samples. Wilmshurst 
(1967) used this framework in his analysis of 
aqueous sample cell geometries. Wilmshurst’s 
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results for saturable and non-saturable unlimited 
aqueous samples are summarized in Table l. The 
“saturable sample” case implies that the incident 
power is readjusted to hold H1 at the sample con-
stant. The non-saturable case implies that the inci-
dent microwave power is constant. The early lit-
erature on this subject is extensive. Poole (1983) 
provides access to these papers and Alger (1968) 
gives additional background. Following Table 1, 
the present paper provides comparable information 
for uniform field rectangular modes and gives 
sensitivities for uniform field modes compared 
with conventional modes. 
 An additional complication occurs when analyz-
ing microwave characteristics of uniform field 
resonators containing aqueous samples. Mett et al. 
(2001) showed that when a sample is inserted, the 
uniformity of the field is degraded. The uniformity 
can, in principle, be recovered in one of two ways: 
(i) at constant microwave frequency the resonator 
radius can be made smaller; (ii) at constant resona-
tor radius, the dielectric thickness can be made 
thicker, resulting in a uniform field at a lower 
microwave frequency. 
 Neither alternative is practical for general-
purpose usage. The perturbations caused by the 
sample will generally be small; nevertheless, the 
resulting inhomogeneity of the field over the sam-
ple is of interest to the investigator. Inhomogenei-
ties for optimum sample sizes were calculated 
here. The axial field nonuniformities resulting 
from sample insertion considered here were found 
to be on the order of < 0.1%. 
 A major advantage of uniform field modes is 
that the electric field distribution across the sample 
is uniform along the axis of the sample. For con-
ventional cavities, the curl of the electric field 
varies along the sample axis sinusoidally. In prin-
ciple, it would be appropriate to design a sample 
cell geometry with optimized cross section for 
each position along the sample axis, as was pat-
ented (Hyde, 1973). Since that possibility is tech-
nically difficult, the cross-sectional values reported 
in the early literature can be considered averages 
over optimum values along the sample axis. In all 
previous aqueous sample-cell designs, the cross 
section was sub-optimum along the sample, being 
too small at the ends and too large at the middle. 
Only the integral over the sample was optimum. A 
price was paid in sensitivity, which no longer 
needs to be paid when using a uniform field mode, 
since the cross section is optimum at every point 
along the sample axis. The present paper charac-
terizes this observation in a quantitative manner. 
 In conventional geometries, it would be possible 
to vary the length of the aqueous sample by chang-

ing the diameter D to length L ratio for the cylin-
drical TE011 mode or the height Z to length Y ratio 
for the rectangular TE102 mode. We are not aware 
of an investigation of the effect of D/L or Z/Y on 
aqueous sample cell design and performance, and 
that would be a useful exercise. The question of 
optimum sample length is more compelling for the 
uniform field modes, since the length can be var-
ied freely without shifting the resonant frequency. 
This is a further purpose of the present study. 
 
 

THEORY 
 

Our analytic solution to the rectangular TEU02 
uniform field mode in the presence of an aqueous 
flat cell is an extension of the work presented by 
Mett et al. (2001). First, we recast the theory of 
transverse material discontinuity given in Sec. III 
A of this paper in the rectangular geometry shown 
in Fig. 1. The fields (and wave functions) are uni-
form in the dimension x. Using a sample thickness 
2a, the transverse wave functions are, 
 
 ayyH <<= 0,cos 212 γψ  (1) 
 2/,sincos 111 YyayByA <<+= γγψ  (2) 
 

 
Fig. 1. Rectangular TEU02 mode, see Mett, Froncisz and 

Hyde (2001).  Here d is the dielectric thickness, X and 
L are free parameters and Y is the free space wave-
length.  The cavity is analogous to the TE102 mode.  
The aqueous sample lying in the nodal plane of zero 
electric field is illustrated. 
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where H1 represents the magnitude of the RF mag-
netic field at the center of the sample (the origin), 
and the transverse wave numbers are given by γ 1 
and γ 2. Further, in this geometry, the unit normal 
to the material boundary yn ˆˆ = , a unit vector in 
the y direction, and the transverse gradient 

yyt ∂∂=∇ /ˆ . Then in combining continuity of 
axial RF magnetic field Hz across the dielectric 
with the boundary condition at the wall, 
 
 0

2/1 =∂∂
=Yy

yψ  (3) 

 
we find, 
 
 [ ],2tansincos)cos( 11121 YaaaHA γγγγ += (4) 
 [ ].2cotcossin)cos( 11121 YaaaHB γγγγ +=  (5) 
 
In combining these with the continuity of tangen-
tial electric field across the dielectric boundary, we 
obtain, after some algebra, the equation, 
 
 )]2/(cot[cot 1122 aYa −−= γγγγ  (6)  
 
Equations (4) - (6) are the rectangular analogs to 
Eqs. (81) - (83) of Mett et al. (2001). Equation (6) 
is also the same as Eq. (12) of Stoodley (1963), 
except that here the context is that of the TEU02 
uniform field mode instead of the standard TE102 
mode and we permit the transverse wave numbers 
to be complex rather than real.  
 Next, the theory of coupled transverse and axial 
material discontinuities outlined in Sec. III C of 
Mett et al. (2001) is applied. We permit the trans-
verse and axial wave numbers of the purely trans-
verse and radial problems to assume their respec-
tive roles in the coupled transverse and radial 
problem and ignore the fields in the relatively 
small region 0 < y < a, L/2 < z < L/2 + d. This is 
done by solving the system of five equations and 

five unknowns given by Eq. (6) above, combined 
with Eqs. (85) and (12) of Mett et al. (2001): 
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.cot2tan 2211 dkkLkk =  (8) 

 
Here, ω designates the radian frequency, c the 
speed of light in vacuum, k the axial wave number, 
and εrd and εrs the relative dielectric constants of 
the end dielectrics and sample, respectively. Sub-
scripts 1 and 2 designate the regions without or 
with dielectric, respectively. With dielectric losses, 
the dielectric constants are complex and all the 
five unknowns ω, γ 1, γ 2, k1, k2 are generally com-
plex. This system of equations was solved numeri-
cally using a Mathematica 4.1 root solver. The 
solution was found by starting from the exact 
uniform field mode solution k1 = 0 for no sample. 
The thickness of the end dielectrics and the 
Y dimension of the cavity in this case are given by 
 
 0

2/1
4

1 ])1Re[( fcd rd
−−= ε  (9) 

 ,0fcY =  (10) 
 
where the subscript 0 is used on the frequency to 
denote the desired real operating frequency of the 
resonator and distinguish it from the numerical 
solution ω = 2πf. 
 In the coupled problem, the transverse wave 
functions given by Eqs. (1) and (2) above are gen-
eralized, respectively, as 
 
 ,22,0,212 LzLay <<−<<→ψψ  (11) 
 ,22,2,112 LzLYya <<−<<→ψψ (12) 
 

 
Table 1.  X-Band Aqueous Sample Q Ratiosa (Wilmshurst, 1967). 
 

Geometry Sample 
type 

Q ration 

saturable  1/3 
Rectangular TE102 with 
flat cell non-

saturable 
2/3 

saturable  indeterminateb 
Cylindrical TE011 with 
capillary non-

saturable 
1/2 

 

aThe sample should be such that the matched loaded Q is reduced to the tabulated function of the matched loaded Q 
of the empty cavity; bThe radius should be as large as possible. 
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where the first subscript corresponds to the trans-
verse and the second subscript the axial. We apply 
continuity of axial RF magnetic field across the 
end dielectrics and obtain, 
  
 .sin)2cos( 212112 dkLkψψ =  (13) 
 
The fields of the resulting TEU02 (nearly) uniform 
field mode are found by substituting Eqs. (1), (2), 
and (11) - (13) above into Eqs. (61), (62) and 
(64) - (67) of Mett et al. (2001). In the region 
0 < y < a and −L/2 < z < L/2, 
 
 ,coscos 121 zkyHH z γ=  (14) 
 ,ˆsinsin)( 12211 yzkykHt γγ=H  (15) 
 ,ˆcossin)( 12210 xzkyHit γγωµ−=E  (16) 
 
in the region a < y < Y/2 and −L/2 < z < L/2, 
 

,cos)sincos( 111 zkyByAH z γγ +=  (17) 
,ˆsin)cossin)(( 11111 yzkyByAkt γγγ −=H  (18) 

,ˆcos)cossin()( 11110 xzkyByAit γγγωµ −−=E   
  (19) 
and in the region a < y < Y/2 and L/2 < z < L/2 + d, 
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In these expressions, µ0 represents the magnetic 
permeability of free space and x∧ represents a unit 
vector in the x-direction. 
 In consideration of energy balance for time 
harmonic fields in the presence of lossy dielectrics, 
e.g. Jackson (1975) Sec. 6.10, expressions were 
obtained for the stored energy W and dissipated 
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Fig. 2. Summary of calculations of signal intensities as a function of aqueous sample thickness.  The dashed curves are for 

the standard rectangular TE102 cavity for reference.  Upper plots (A, B) are for unsaturable samples and lower plots (C, D) 
for saturable.  Left two plots (A, C) are for the free parameter X set to the inner diameter of X-band waveguide (0.400 
inches or 1.016 cm).  The length L is varied.  Right two plots (B, D) are for the length L set to 4.6 cm.  The free parameter X 
is varied. 
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power Pl in the cavity in terms of the preceding 
expressions for the fields, 
 
 W = Wv + Wd + Ws, (23) 
where  
 
 ,

regionvacuum02
1 ∫ ∗⋅= dVWv EEε  (24) 

 ,)Re(
sdielectric end02

1 ∫ ∗⋅= dVW rdd EEεε  (25) 

 ,)Re(
sample02

1 ∫ ∗⋅= dVW rds EEεε  (26) 

and 
 
 Pl = Pw + Pd + Ps, (27) 
 
where 
  

,)ˆ()ˆ()2(
walls

1∫ ∗− ×⋅×= dSnnPw HHσδ  (28) 

 ,)Im()Re(
sdielectric end0 ∫ ∗⋅= dVP rdd EEεεω  (29) 

 .)Im()Re(
sample0 ∫ ∗⋅= dVP rss EEεεω  (30) 

 
In Eq. (28), σ is the wall conductivity and the skin 
depth δ = (π f0 µ0 σ )−1/2. Further, integrals repre-
senting the unsaturable and saturable signal 
strengths were formed,  
 
 ,)(

sample

21 ∫ ∗⋅= dVPPS linu HH  (31) 

 ,
sample

21 ∫ ∗⋅= dVPS ls HH  (32) 

It is noted that ηQ0 = B f0 µ0 Su with Pin
1/2 = 1, 

where η is the filling factor and Q0 is the unloaded 

Q. The loaded Q when the cavity is matched is two 
times smaller. In the unsaturable case, the input 
power is set to some value, say 1W, and the refer-
ence magnetic field strength H1 cancels out of the 
expression. In the saturable case, µ0H1 is set to 
some value, say 1G, and the input power (which is 
equal to Pl) is adjusted to achieve this.  
 The integrals were carried out analytically with 
the use of complex trigonometric identities such as 
sin θ (sin θ )* =½ cos[2Im(θ )] − ½ cos[2Re(θ )]. 
The results are too lengthy to show in this paper. 
The Q0 value is given by 
 
 Q0 = Re(ω )W/Pl. (33) 
 
Note that Q0 does not account for energies or 
losses in the thin neglected region 0 < y < a, 
L/2 < z < L/2 + d, consistent with the field expres-
sions. 
 For purposes of comparison, the full wave calcu-
lations of all the preceding quantities were also 
found for the standard TE102 mode. In this case, 
d → 0, k1 = π/L, k2 becomes arbitrary, and 
R = (4f0

2/c2 − 1/L2)−1/2. The system is reduced to 
three unknowns, ω , γ 1, and γ 2, and three equations 
given by Eq. (6) and the pair 
 
 ( ) rskkc εγγω 2

1
2
2

2
1

2
1

22 +=+=  (34) 
 

RESULTS 
 

This system was solved simultaneously in the 
same manner as for the TEU02 mode. With these 
values of frequency and wave number, the appro-
priate limiting expressions for the integrals were 
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Fig. 3. Optimum aqueous sample thickness for non-saturable samples (A) and saturable samples (B) as a function of free pa-
rameters X and L. 
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evaluated numerically. All systems of equations 
were solved and expressions evaluated using 
Mathematica 4.1 (Wolfram Research, Inc. 1999, 
Champaign, IL). 
 Calculated values of Q0(102) from our integral 
expressions were compared under the limit of zero 
sample thickness to values from the standard for-
mulae given by Montgomery (1948) and agree-
ment was found. Calculated values of Q0(U02) in 
the limit of zero sample thickness resulting from 
end dielectric losses together with wall losses were 
compared to those predicted by Ansoft High Fre-
quency Structure Simulator, version 8.0.25 (An-
soft Corp., Pittsburgh, PA), and agreement was 
found. All calculations were carried out on a dual 
processor Compaq W8000 workstation, with two 
Intel Xeon 1.7GHz Pentium processors. The oper-
ating frequency f0 was set at 9.500 GHz. The di-
electric constants were taken from Von Hippel 
(1954): the dielectric ends were taken as quartz, 
εrd = 3.78(1 + 10−4i) and the sample was taken as 
water at 25°C, εrs = 55(1 + 0.54i). The conductiv-
ity of the walls was that of copper, 
σ = 5.80 107/(Ωm). 
 Figure 2 summarizes the major results of this 
paper. Following the general theory of sensitivity 
by Feher (1956), the EPR signal for a reflection 
activity employing a linear microwave detector 
(i.e. sensitive to the microwave voltage rather than 
the microwave power) can be written 
 
 ,21

0 inPQS χη∝  (35) 
 
where χ is the RF susceptibility. If the sample 
cannot be saturated with the available microwave 
power, Pin and χ are constant and a calculation of 
the ηQ0 product permits theoretical comparison. 
This calculation has been done in Figs. 2A and 2B 
for varying geometries. Examples of samples of 
this class are Mn2+ or Cu2+. 
 Referring to Eq. (35), consider the case where 
the sample can be saturated and the saturation 
parameter in the denominator of the term χ be-
comes important. To compare aqueous cell geome-
tries for this class of samples, one imagines Pin

1/2 
to be readjusted in all comparisons such that the 
RF field at the sample remains constant. Thus from 
an engineering perspective, for non-saturable sam-
ples, Pin is held constant and for saturable samples, 
H1 is held constant. Aqueous sample cell calcula-
tions are presented in Figs. 2C and 2D. Examples 
of such samples are spin labels and free radicals in 
aqueous solvent. 
 The length of the sample cell in the standard  
TE102 rectangular cavity is 2.3 cm. The perform-
ance of the uniform field and standard cavities are 

similar for non-saturable samples (Fig. 2A) when 
the sample length L and the free parameter dimen-
sion X correspond to the dimensions of X-band 
waveguide. There is a benefit of 30% for the uni-
form field mode for saturable samples, Fig. 2C. 
Doubling of the free parameter L from 2.3 to 
4.6 cm yields additional benefit. For the saturable 
sample class, Fig. 2C, the uniform field mode has 
about twice as much sample (L = 4.6 cm versus 
2.3 cm) and yields about twice the signal. Proba-
bly a choice of L = 9.1 cm (four times the normal 
broad face dimension of X-band waveguide) will 
result in an awkwardly long sample that places 
demands on the magnet homogeneity. This case 
has been included in the calculation to bracket our 
general conclusion that a choice of L = 4.6 cm 
seems to be about right. 
 The free parameter X is also of interest. Resona-
tors oscillating in the TM110 mode, which is essen-
tially similar to the TE102 mode, with the X dimen-
sion doubled were introduced commercially by 
one of us (J. S. Hyde) and are commercially avail-
able from Bruker Analytik (Karlsruhe, Germany). 
As is apparent from Figs. 2B and 2D, which were 
for L = 4.6 cm, additional benefit is obtained if X 
is increased, as was found previously for the 
TM110 cavity. However, in our judgment, a 4 cm 
wide flat cell seems unwieldy, and a choice of 
2 cm seems reasonable. 
 Saturable samples, particularly spin labels, are 
much more commonly used in EPR spectroscopy 
than in non-saturable samples. The calculations of 
Fig. 2 lead to the conclusion that L = 4.6, X = 2 cm 
is a practical geometry that requires four times 
more sample than a conventional sample geometry 
in a rectangular TE102 rectangular cavity, and 
yields three times higher signal intensity. 
 It is noted from Fig. 2 that the optimum flat cell 
thickness is not the same for saturable and non-
saturable samples. This point is also emphasized in 
Fig. 3. It is apparent also from an inspection of 
Figs. 2C and 2D that the falloff in sensitivity at 
larger sample thicknesses is very gradual. Curves 
such as seen in Figs. 2C and 2D also do not appear 
in the standard citations, and may be new. The 
gradual falloff may be important for EPR in tissue 
samples where the sample thickness is difficult to 
control.  
 Qualitatively, the sensitivity benefits of the uni-
form field mode arise from the following factors: 
(i) the dimension Y is 1.5 times smaller than in the 
standard cavity, improving the filling factor; (ii) 
the flat cell thickness is optimum at every point 
along L; (iii) the area over which the electric field 
is zero, the XL product, is unrestricted. The pri-
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mary disadvantage is loss of Q because of loss in 
the dielectric at the ends of the resonator. 
 Figure 2 demonstrates that there is a substantial 
advantage in using the TEU02 uniform field mode 
for aqueous samples with respect to signal-to-
noise ratio in addition to the advantage with re-
spect to the standard resonator that the RF mag-
netic field is uniform over the sample. Non-linear 
experiments including CW saturation, saturation 
transfer, electron-electron double resonance 
(ELDOR), pulse ELDOR, saturation recovery, free 
induction decay and spin echo will all benefit from 
a uniform field over the sample, resulting in data 
of higher quality. Contamination of data from 
sample segments that lie in differing regions of the 
sinusoidally varying RF field intensity will no 
longer be a confounding factor. 
 Figure 3 extracts data from the analysis of Fig. 2 
concerning optimum sample thickness for non-
saturable (3A) and saturable (3B) samples. In 

addition, optimum sample thicknesses have been 
calculated for the standard TE102 cavity – satur-
able, 0.44 mm, non-saturable, 0.29 mm. Variation 
of sample thickness is not convenient for quartz 
sample cells. Hyde (1972) presented a technique 
for machining sample cells of precise thickness 
from plastic, which may be useful to optimize the 
signal intensity. 
 Figures 4A and 4B show Q0 values as a function 
of the experimental parameters L, X and sample 
thickness 2a. The dashed lines are for the standard 
TE102 rectangular cavity. It is noted that the ideal 
Q0 value for this cavity, about 9000, is above the 
practical value of about 7500. This figure may be 
useful to the EPR instrument designer in the fol-
lowing circumstances:  
(i) dominant source phase noise, (ii) dead time 
problems in pulse EPR, (iii) ELDOR or other 
experiments where more than one microwave 
frequency is incident on the sample, (iv) resonator 
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sample geometries that are prone to microphonics. 
In these circumstances, it may be desirable to trade 
signal intensity for lower Q-value. 
 Similarly, Figs. 4C and 4D show RF magnetic 
field values as a function of the experimental pa-
rameters. This figure provides information to the 
EPR spectroscopist concerning whether or not the 
sample in which he is interested fits the “non-
saturable” or the “saturable” condition. It can also 
be used to set initial conditions for comparison of 
uniform field resonators with the conventional 
TE102 resonator. 
 Table 1 shows that the optimum flat cell for a 
saturable sample in the standard TE102 rectangular 
cavity should lower the Q value to 1/3 of the value 
when empty. The factor changes to 2/3 for non-
saturable samples. These ratios have been recalcu-
lated for the uniform field TEU02 mode as a func-
tion of L (see Fig. 1) with X set at the narrow di-
mension of X-band waveguide (0.400 inches or 
1.016 cm). For saturable samples, the factor varies 
from 0.347 when L is relatively short to 0.344 for 
L relatively long. For non-saturable samples, a 
value of 0.654 was obtained for short L and 0.659 
for long L. The factors were also recalculated for 
the standard TE102 cavity: 0.345, 0.655. It is con-
cluded for practical purposes that Wilmshurst’s 
values of 1/3, 2/3 remain valid for both uniform 
field and conventional resonators. 
 
 

CONCLUSIONS 
 
Modern computation capabilities permit analyses 
not previously practical, including finite element 
solutions of Maxwell’s equations and numerical 
solutions of systems of equations. These capabili-
ties have led to the development of a new class of 
microwave cavities for use in EPR spectroscopy, 
namely, uniform field modes. In the present study, 
they have enabled a theoretical investigation for 
aqueous sample-cell design for the rectangular 
TEU02 uniform field mode. Based on this analysis, 
a practical TEU02 mode for use with aqueous sam-
ples is currently under construction in the authors’ 
laboratory.  
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