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To properly estimate dimensional complexity (DC) from a time series some requirements should be met as to signal re-
cording. Moreover, some parameters necessary for reliable reconstruction of chaotic character of the series should be 
assessed. In this paper, we calculated the influence of an embedding parameter, window width (W), on dimensional 
complexity (DC) of posturographic signal. To this aim we used posturographic signals from 32 young healthy partici-
pants. Our results indicate that no clear value of W can be determined because plateau-segment in the plot DC(W) was 
not found. For further analysis, the values of W=0.2-1s seem to be suitable for investigations of postural reflexes and the 
values of W=1-10s for slow movement of center-of-mass examination. 
 

 
INTRODUCTION 

 
Posturography is a method enabling quantitative 
evaluation of state and efficiency of human bal-
ance system. In this method, location of pressure 
center of the body is measured and registered 
under different experimental conditions. Usually, 
this signal consists of 2 dimensions: anterio-
posterior, (AP) and lateral (LAT) which as a rule 
are analyzed separately. Thus far, posturography 
has not commonly been accepted as a useful clini-
cal diagnostic method because of insufficient sen-
sitivity and accuracy of usual parameterization of 
the signal (e.g. sway path, sway area, Romberg 
quotient) (Motta, Spano, Neri, Schillaci, Corteloni, 
Andermarcher, Gamberini & Rizolli, 1991; Prieto, 
Myklebust, Hoffmann, Lovett & Myklebust, 
1996). However, it seems to be a valuable research 
method enabling better understanding of human 
balance system and some its disturbances. 
 In our previous paper (Michalak & Jaśkowski, 
2002) we calculated the dimensional complexity 
(DC) of posturographic signal, which is formally 
defined as (Pritchard & Duke, 1995): 
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where d – stands for DC, r – describes the object 
size in a single dimension, M – is the “bulk” of the 
object and the symbol ∝ stands for “is propor-
tional to”. 

 To apply this definition to analysis of 
1-dimensional time series one has to specify what 
M and r mean. Function M(r) in such a situation 
could be defined as the number of pairs of points, 
Euclidean distance of which being less or equal to 
r. “Point” should not be understood as a single 
value of the signal but as a point in an m-
dimensional phase space, its coordinates constitute 
m consecutive, equally distant samples of the sig-
nal. Parameter m stands for so-called embedding 
dimension (ED). In order to correctly estimate DC, 
ED has to be large enough. Its value should be 

12 2 +⋅> dm , where d2 is the real dimension of 
the object. For example, let’s consider a sequence 
of 100 samples xi. If m  =  4 and lag or delay time 
L = 2 (number of samples between components of 
each state vector), then we can form n = 94 points 
in the 4-dimensional space state: (x1, x3, x5, x7), (x2, 
x4, x6, x8), (x3, x5, x7, x9), ..., (x94, x96, x98, x100). N = 
n(n-1)/2 = 94⋅93/2 = 4371 Euclidean distances can 
be calculated between these points. The number of 
distances smaller than r increases with r. Initially it 
increases exponentially. It was proved that the 
exponent of this relation is equal to DC (Pritchard 
& Duke, 1995). If M(r) is plotted in the log-log 
scale the segment with exponential scaling will be 
approximately a straight line. It is so-called linear 
scaling region (LSR). DC can be estimated as the 
slope of LSR. In a graph displaying derivative of 
log M as a function of log r, LSR is viewed as an 
approximately horizontal straight line. Function 
log M(r) vs log r is called Correlation Integral. 
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 Parameters m and L determine window width, 
W = (m–1)·L. W is the distance between ends of a 
signal fragment forming a single point in the state 
space. It is very important to choose properly the 
width of W. When W is too wide, ends of a vector 
will be virtually unrelated and the structure of the 
reconstructed attractor will be distorted. Estimated 
DC will be too large in such a case (see Fig.1: W = 
80-160 pts). When it is too narrow, two consecu-
tive co-ordinates of a point in the state space will 
have nearly the same values. In such a situation, 
all points of attractor will be distributed along the 
main diagonal of the state space and the structure 
of attractor will be invisible. DC will be underes-
timated in such a case (see fig.1: W = 1-10pts). 
 Thus W is, beside the minimal recording time 
and minimal sampling frequency, one of the most 
important parameters determining preciseness of 
DC calculations. So far, no systematic investiga-
tions were undertaken to check influence of this 
factor on estimated DC. This paper is aimed to 
determine the proper window width W for DC 
calculation. Because many lacunarities have been 
observed in the Correalation Integrals (log C(r)’ vs 
log r) of posturographic signals and thus the LSR 
has often been difficult to determine, we used 
Takens-Ellner algorithm for DC calculation. This 
algorithm avoids problems of lacunarities and lack 
of LSR. Detailed description of this algorithm can 
be found elsewhere (Ellner, 1988; Michalak & 
Jaśkowski, 2002). 
 
 

METHODS 
Subjects 
 Detailed description of data acquisition and 
selection of participants was presented elsewhere 
(Michalak & Jaśkowski, 2002). Briefly, posturo-
graphic signals were registered from 32 healthy 
persons (18-50 years). 130-s long signals were 
registered with sampling frequency of 200 Hz 
twice, with open eyes (EO) and with closed eyes 
(EC). Altogether, 4 kinds of signals were analyzed 
separately: EO-AP, EO-LAT, EC-AP and EC-
LAT. First 10-s segment of each time series was 
considered as stabilization time and rejected from 
further analysis. Thus the effective interval for 
calculations was 120 s. 
 
Computational experiments 
 In order to estimate a proper window width for 
DC calculations, two computational experiments 
were performed: 

I. Estimating autocorrelation times of analyzed 
signals. 

II. Estimating DCs of posturographic signals 
using Takens-Ellner algorithm for values of W 
from 0.25 to 24 s and looking for a plateau 
segment on the graph DC(W). This segment 
determines the range of accepted values of W 
for DC calculations. Next, the differences be-
tween original and shuffled signals (DF = 
DCshuff-DCorig) and its ratios (RA = DCshuffl / 
DCorig) will be presented. As is shown in Fig. 1 
for Lorenz attractor, maxima of these relations 
correlate approximately with the end of plateau 
segment.  

 
Estimating the autocorrelation times  
 Autocorrelation time τ is often used to estimate 
W for DC calculations. It is defined as a time for 
which autocorrelation function of a signal de-
creases e-times. The first zero of autocorrelation 
function or its first minimum is also sometimes 
used. It is commonly assumed that for DC calcula-
tions the window width should be approximately 
W = τ ÷ 4τ. Empirically optimized W is as a rule 
the value for which the widest linear scaling re-
gion in the Correlation Integral plot is observed. 
The majority of signals (e.g. Lorenz Attractor, 
Henon equation) possess the optimal W just in the 
range of W = τ ÷ 4τ. 
 In order to determine how autocorrelation time 
depends on sequence length, autocorrelation time 
was calculated for sequence lengths of 10 ÷ 120 s. 
Original signals EO-AP, EO-LAT, EC-AP and 
EC-LAT were analyzed separately. 
 
Calculation DC for different values of W 
 If W gradually increases then estimated DC of a 
signal generated by a chaotic system (e.g. Lorenz 
attractor) increases initially from 1 to the value of 
its dimensional complexity. Next, a plateau seg-
ment is observed. Finally, when W becomes large, 
further increase of DC is again observed. The 
relation DC(W) for Lorenz signal is presented in 
Fig.1. 
 One can observe that estimated DC of a chaotic 
signal was constant for some window widths from 
a given range. In Fig.1, this is the range of about 
W = 10 ÷ 40 pts. Moreover, difference between 
DCs for original and shuffled signals (DF) and its 
ratio (RA) decreases for large W. Approximately at 
the end of this range the DF(W) and RA(W) reach 
their maxima.  
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 In our experiment, we attempted to find such a 
plateau for posturographic signals and we ana-
lyzed the differences and ratios between DC of the 
original and shuffled signals for window widths W 
= 0.25 ÷ 24 s. To this end, DCs of 64 (32 for open 
eyes and 32 for closed eyes) 120-s long posturo-
graphic series were calculated using Takens-Ellner 
algorithm. The series were embedded into the state 

space of m = 26 dimensions. As W = (m – 1)⋅L, the 
smallest window calculated for L = 1 gives the 
width of 25 signal points. For sampling frequency 
of 200 Hz it amounts to the width of W = 0.125 s. 
Thus, in order to obtain W = 0.25 s, 0.5 s, 0.75 
s, ... following values of L = 2, 4, 6, ... were cho-
sen, respectively. The embedding dimension m = 
26 seems also sufficiently large bearing in mind 
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Fig. 1. Dimensional complexity of Lorenz attractor calculated by means of Takens-Ellner algorithm for different window 

widths. Plateau in the region of  W=10-40pts determines the proper window width for DC calculations. 

Autocorrelation time as function of sequence length 
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Fig. 2. Autocorrelation times for different lengths of posturographic series. EO - open eyes, EC - closed eyes, AP - anterio-

posterior direction, LAT - lateral direction of movement. 
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the rule: m > 2d2 + 1 (m is the embedding dimen-
sion and d2 - real dimension of the object). Shuf-
fled series were constructed using so-called Surro-
gate-2 algorithm. Details of the algorithm used in 
this paper were presented elsewhere (Michalak & 
Jaśkowski, 2002; Rapp, Albano, Schmah & Far-
well, 1993; Rapp, Albano, Zimmerman & 
Jimenez-Montano, 1994). 
 
 

RESULTS 
 
Autocorrelation time 
 Mean autocorrelation times for various sequence 
lengths are depicted in Fig.2. 
 As it is seen, autocorrelation times were not 
constant for different sequence lengths as it was 
expected, but they increased approximately line-
arly.  
 Additionally, in Fig. 3 the distribution of auto-
correlation times of all 128 analyzed 120-s series 
(32 persons × 4 kinds of signal: EO-AP, EO-LAT, 
EC-AP and EC-LAT) is presented. 38 values of 
autocorrelation times were in the range of τ = 
0 ÷ 2 s, 56 values were in the range of τ = 2 ÷ 8 s 
and the rest in the range of 8 ÷ 26 s. It means a 
relatively large between-subject variability of this 
magnitude.  
 
 Calculation DC for different values of W 
 Mean values of estimated DC for 8 examples of 
the series (AP/LAT-EO/EC-original/shuffled) are 
presented in Fig. 4a, b. 
 In the whole range of Ws, DCs for original sig-

nals were smaller than those for shuffled signals. It 
confirms the hypothesis that posturographic signal 
possess a deterministic component. DC increased 
with a negative acceleration as W increased for 
both original and shuffled signals. No plateau 
typical for chaotic signals was observed in these 
figures, which could be used for proper DC calcu-
lations. In Fig. 5 a, b mean differences of DFs and 
ratios RAs of DCs for original and shuffled signals 
are plotted as a function of W. 
 One can see that maxima of these functions 
showed large variability for different kinds of 
signals. EC-AP possessed a maximum of DF for 
about 9 s and a maximum of RA for about 4 s. In 
case of EC-LAT, DFmax is about 10 s and RAmax is 
about 8 s. For EO-LAT these values were equal to 
about 4 s and 1 s. EO-AP possessed a clear maxi-
mum neither for DF(W) nor for RA(W). 
 Statistical significance of difference between 
DCs of the original and shuffled signals decreased 
gradually with increasing W for all 4 kinds of 
signals. The highest significance was observed for 
W = 0.25 s. The differences between DCs were 
insignificant starting from W > 8 s and W > 16 s 
for EC-LAT and EC-AP, respectively. 
 Additionally, in Fig. 6 the relation DC(W) was 
shown for 8 persons. It is visible that individual 
relations differ considerably. 
 The common feature of these curves is an ap-
proximately linear increase of DC in the range of 
W of about 0.25 ÷ 4 s. Large variability of the data 
can be visible for Ws of lengths longer than 4 s. 
Some of the curves possess plateau for W > 4, the 
others gradually increase in the whole range of W. 

Autocorrelation time for series length t=120s 
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Fig. 3. Distribution of autocorrelation times in 128 analyzed 120-s long time series (32 persons × 4 kinds of signals: EO-AP, 

EO-LAT, EC-AP and EC-LAT). Large between-subject variability of this variable could be observed.  
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DISCUSSION 
 
In the present study, we tried to find a proper value 
of W for posturographic signals by means of two 
different methods: estimation of autocorrelation 
time and by finding a plateau in the relation be-
tween DC and W. Additionally, we searched 
maximal differences and ratios between DCs of 

original and shuffled signals. The obtained results 
did not answer unambiguously to the question 
what a window width should be taken to estimate 
dimensional complexity of posturographic signal.  
 4 kinds of signals were analyzed separately: EO-
AP, EO-LAT, EC-AP and EC-LAT. Different 
results obtained for these 4 kinds of signals sug-
gest that their nature differ remarkably.  

DC as function of window length W. Eyes Open.

W (s)

D
im

en
si

on
al

 C
om

pl
ex

ity

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

AP, Orig    
LAT, Orig
AP, Shuffl
LAT, Shuffl       

 

DC as function of window length W. Eyes Closed.
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Fig. 4 Dimensional complexity of posturographic signals as a function of window width. (upper plot) Open Eyes, (lower 
plot) Closed Eyes. AP - anterio-posterior direction, LAT - lateral direction, Orig - original signals,  Shuffl - shuffled signals. 

Lack of a plateau and DCorig < DCshuffl in the whole range of W is observed. 
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Autocorrelation time 
 Autocorrelation time of “classical” chaotic sig-
nals (e.g. Lorenz attractor) is independent of se-
quence length. It is commonly assumed that for 
DC calculations the window width should be ap-
proximately W = τ ÷ 4τ. Pritchard and Duke pro-
posed a universal value W = 3τ (Pritchard & Duke, 
1992) while Rapp et al. claimed that the optimal 

empirically determined W for Lorenz attractor is W 
= 3.33τ (Rapp, Bashore, Martinerie, Albano, Zim-
merman & Mees, 1989). 
 Autocorrelation times of posturographic se-
quences are approximately linearly related to their 
lengths. Such increase of autocorrelation time is 
typical for signals with f -α-like spectrum and pos-
turographic signal belongs to them (Michalak & 
Jaśkowski, 2002). Theiler has proven that in case 
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( DCshuffl / DCorig ) as function of window width W
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Fig. 5 (a) Differences (DCshuffl - DCorig) between DCs of shuffled and original signals; (b) ratios (DCshuffl / DCorig). Maxima of 

these relations differ remarkably for separate kinds of signals oscillating mainly about W=1÷10s.  
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of signals with f -α-like spectrum, autocorrelation 
time can scale with the size of the data set, being 
practically as long as about 10-30% of sequence 
length (Theiler, 1991). So, when a sequence length 
becomes longer and longer, autocorrelation time 
increases linearly. If the sequence length becomes 
longer, new Fourier components of lower and 
lower frequencies come to analysis. These compo-
nents have larger and larger amplitudes and, thus, 
influence autocorrelation time to the largest extent.  
 As shown in Fig. 3, the highest observed auto-
correlation time was about τ ≈ 25 s. This is about 
20% of the sequence length (120 s). Therefore, 
one can assume that, regarding the f -α-like spec-
trum, the results were as expected. Unfortunately, 
because of it, they cannot be a good estimator of 
window width for DC calculations.  
 It should be noted that these signals with such a 
spectrum can have a fractal structure, i.e. structure 
looking similarly irrespectively of the scale on 
which it is observed. Examples of such fractal 
signals one can find in Schreiber (1999). Variance, 
mean or autocorrelation time of such signals can 
be linearly related to the sequence length. An in-
teresting question arises, which should be an-
swered in future research, whether or not posturo-
graphic signal possess fractal properties? 
 
Calculation DC for different values of W 
 High significance of differences of DCs between 
original and shuffled signals for small W less than 
about 4 s suggests that proper W should be of 
about this value. Unfortunately, a plateau segment 
was not observed in this range. On the other hand, 
maxima of DFs and RAs were observed mainly in 
the range of W = 1 ÷ 10 s suggesting that W should 
not exceed 10 s. Decrease of these factors for W > 
10 s suggests that W from this range is too long. 
Ends of so long vectors (being the points in the 
state space) are probably weakly correlated and the 
attractor’s structure becomes invisible. 
 The lack of plateau in the plot DC(W), on the 
one hand, and high significance of DCs’ differ-
ences, on the other hand, can be due to some rea-
sons. One reason could be the nonstationarity of 
posturographic signal caused by irregular respira-
tory movements, the tiredness increasing during 
the recording period, both physical (muscular) and 
mental. This could disturb the results, especially in 
case of long recording times. 
 The second reason of the lack of a plateau could 
be an influence of a stochastic component. A re-
markable contribution of both deterministic and 
stochastic components into posturographic signal 
was postulated by Riley et al. (Riley, Balasubra-
maniam & Turvey, 1999). They developed a 

method of nonlinear analysis called recurrence 
quantification analysis (RQA). Results obtained by 
these methods showed that posturographic signals 
possess some deterministic dynamics observed 
against the background of the stochastic activity. 
Of interest is that their results suggested some kind 
of nonstationarity in posturographic signals under 
all registration conditions.  
 A reason for high variability of the relation 
DC(W) for high values of W (W > 4 s) might be 
due to f –α-like spectrum of posturographic signal. 
Michalak and Jaśkowski (2002) found that α coef-
ficients varied in the range of 0.9 ÷ 1.4. Theiler 
(1991) has proven that DC of pink noise depends 
on α and for α∈〈1,3〉 it is equal to a finite value of 
d2 = 2/(α-1). For α = 1.4, d2 is equal to 5 and for α 
= 1 d2 is equal to infinity. This could explain why 
some plots of DC(W) were leveled off for W > 4 s 
corresponding to α ≈1.2 ÷ 1.4. Sequences with 
spectrum for which α ≈ 0.9 ÷ 1.1 would have no 
plateau in this range. 
 Comparison of the α coefficients and DCs for 
separate signals (AP/LAT - EO/EC - origi-
nal/shuffled) calculated for some values of win-
dow widths (W = 1, 4, 8 and 24 s) forced us to 
consider the above presented claim with some 
caution. In most cases there was no significant 
correlation between α and DC for various kinds of 
signals. Some significant correlations were ob-
served especially for shuffled signals. This fact 
confirms the relatively weak effect of α coefficient 
on calculated DC. It must be kept in mind, how-
ever, that spectra of posturographic signals are f –α-
like only approximately. Visual inspection of ana-
lyzed spectra in log-log scale suggests that some-
times the initial part of spectrum representing the 
lowest frequencies decreases slower than the fur-
ther part representing the higher frequencies. This 
is probably due to weak correlation between α and 
DC but this problem requires further investiga-
tions.  
 A next problem which was only tentatively ad-
dressed in this paper is that oscillations represent-
ing by the lowest frequencies, lower than, say, 
0.5 Hz, have relatively large amplitudes of about 
10,000 units. The question is to what degree they 
mask the oscillations of higher frequencies and of 
much smaller amplitudes? We suppose that these 
higher frequencies can probably play an important 
role in the process of maintenance of body bal-
ance. In such signals, possible regularities for high 
frequencies with small amplitudes can be nearly 
invisible for classical algorithms estimating DC 
because large oscillations of the lowest frequen-
cies significantly dominate over them. 
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 Low frequencies can be considered as reflecting 
the movement of center of body mass over the 
ground plane. These movements are slow, with 
large amplitude, often accidental. Sometimes one 
can see that the center of participant’s mass moves 
during the recording skipping-wise. For instance, 
during the first 20 s participant moves slightly 
forwards, the next 40 s backwards and finally 

forwards again. The examples of such signals are 
presented in Fig. 7. 
 This kind of behavior is probably due to the drift 
of the center of body mass over the ground or due 
to tiredness of muscle groups loaded at the mo-
ment. For example, if the center of mass moves 
forwards, the tension of flexors of foot increases 
and the tension of its extensors decreases. This 
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Fig. 6 Examples of relation DC(W) for 8 persons. For W>4 s large between-subjects variability of this relation could be ob-

served. 
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could contribute to the nonstationarity of posturo-
graphic signals, the problem discussed above, 
especially when long recording periods is used. 
During these long periods small background oscil-
lations of 0.5-20 Hz are visible which ensure 
proper body balance. The source of these oscilla-
tions should be noticed in unconscious postural 
reflexes. 
 Therefore, an important question arises: to what 
extent the calculated DC reflects the slow move-
ment of center of mass (low frequencies, large 
amplitudes) and to what extent the efficiency of 
postural reflexes (high frequencies, small ampli-
tudes)? It seems to be purposeful to perform the 
DC calculations after filtering off the low frequen-
cies below ca. 0.5 Hz to get signal reflecting the 
activity of postural reflexes only. The proposed 
limit of frequency (0.5 Hz) was calculated theo-
retically from the formula: )/2/(1 glf π= , 
where f is the frequency of mathematical pendu-
lum. Putting the length of l = 0.7 ÷ 0.9 m as the 
distance of human's center of mass to the ground, 
we obtain the frequency of oscillations ca. 0.5 ÷ 
0.6 Hz. Thus higher frequencies observed in the 
spectrum would probably reflect postural reflexes, 
not connected with the movement of center of 
mass. Their efficiency seems to be most important 
in the maintenance of body balance. 
 DC calculations of filtered data will be pub-
lished in a separate paper. According to some 
preliminary calculations, autocorrelation times 

were in the range of 180 ÷ 220 ms. This suggests 
that attention should be paid to the range of W = 
0.2 ÷ 1 s which probably carries the information 
about postural reflexes (carried by frequencies > 
0.5 Hz). DC calculated for the range of W = 1 ÷ 
10 s would be probably connected with slow 
movements of center of mass over the ground. 
 Another problem is a question if posturographic 
signal is a superposition of some elementary sig-
nals originated from different levels of the body 
(ankles – knees – hips – loins – neck – head). The 
systems regulating the body equilibrium on these 
elementary levels are probably simpler in their 
structure than that generating the resultant pos-
turographic signal. Thus, it is likely that the differ-
ence between, say, knees and hips would not pos-
sess f –α-like kind of spectrum. Therefore autocor-
relation time should not increase with time and 
estimation of proper W would not be as problem-
atic as for posturographic signal. To answer this 
question one needs a more complex registration 
system which enables to monitor the movement of 
separate parts of the body. 
 A new possibility of posturographic investiga-
tion would be to analyze the velocity of movement 
of COP (VCOP) instead COP itself, i.e. the first 
derivative rather than the original of posturo-
graphic signal. VCOP should be especially affected 
by the fast and short postural reflexes which 
should be disturbed only negligibly by slow 
movement of center of mass of the body. The 
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Fig. 7. 3 examples of posturographic signal presenting the drift of center of mass over the ground. In the background of these 

slow movements of large amplitudes, small high frequency oscillations are observed which reflect proper postural reflexes.  
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problem is that creating the VCOP signals would 
force to filter off the high frequency noise before 
calculations, because with increasing sampling 
frequency, noise contamination of VCOP-s will be 
increasingly larger. So, filtering parameters have 
to be established before performing these calcula-
tions.  

 
 

CONCLUSIONS 
 
The results presented in this article suggest that it 
is rather impossible to specify unambiguously the 
window width for DC calculations of posturo-
graphic signal. This means that posturographic 
signal possess no specific value of DC. It is possi-
ble only to find relations between different partici-
pant groups using DCs calculated for ad hoc  
specified values of W. These calculated DCs 
would not be equal to the dimensional complexity 
of the signal but it is possible that these parameters 
will significantly distinguish some kinds of pos-
tural control disturbances. For further investiga-
tions the range of W = 0 – 10 s seems to be reason-
able. 
 Nevertheless we argue that posturographic sig-
nal is not stochastic in nature but possesses some 
kind of regularity as indicated by significantly 
smaller DC of original than stochastic signals. This 
significant difference was observed in the wide 
range of W for all 4 kinds of signals (EO/EC-
AP/LAT).  
 The lack of unambiguous value of window 
width may result from many reasons discussed 
above: f –α-like spectrum properties, nonstationar-
ity of the signal, drift of centre of mass during 
registration process and superposition of signals 
generated by separate levels of the body. 
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