
Current Topics in Biophysics 2005, 29(1-2), 83-88 

 

 

 

 

RADIO FREQUENCY SKIN DEPTH CONCEPTS  

IN MAGNETIC RESONANCE 
 

 

RICHARD R. METT1, JASON W. SIDABRAS, JAMES S. HYDE 
 

Department of Biophysics, Medical College of Wisconsin,  

Milwaukee, Wisconsin USA 

 

The standard skin depth model for the penetration of electromagnetic waves into conductors is reviewed and extended 

to cover lossy dielectrics, such as water and polyacrylamide gel. Wavelengths and attenuation lengths for different 

EPR frequency bands are shown. Comparisons of finite element simulations and analytic estimates for the wavelength 

and attenuation length are made for four cases including: (i) field penetration into a resonant cavity wall, (ii) a plane 

wave in vacuum normally and (iii) obliquely incident on polyacrylamide gel, and (iv) surface coil excitation of a cylin-

drical sample of polyacrylamide gel. Results indicate good agreement between the analytic predictions and the first 

three cases, but not for the fourth. For this case, we find that the sample size must be larger than about a wavelength 

before the analytic wavelength estimate becomes close to the actual wavelength. Otherwise, geometrical effects domi-

nate the phase of the penetrating fields. We also find that the attenuation length is dominated by geometrical effects 

even when the sample size is comparable to a wavelength. 
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INTRODUCTION 

 

We have observed that the phrase “skin depth” is 

often used in the magnetic resonance literature in a 

somewhat imprecise manner. The formal definition 

of skin depth refers to the attenuation of a plane 

wave inside a conductor,  
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where f is the frequency of oscillation, µ0 is the 

magnetic permeability of free space, and σ is the 

conductivity. For a plane wave, the skin depth is 

the distance for which the amplitude of the electric 

or magnetic field or the current density drops by a 

factor of e. Since the skin depth and the conductiv-

ity are readily linked by Eq. (1), it is possible in a 

formal sense to use them interchangeably. How-

ever, the physical sense of the meaning of “skin 

depth” as a distance to which all components of the 

electromagnetic fields have dropped in intensity by 

a factor of e may no longer be valid. This paper 

seeks to define the areas of confusion in the con-

text of magnetic resonance, including EPR, NMR 

and MRI and to provide a rigorous theoretical 

background.  

 Among the practical magnetic resonance situa-

tions where the concept of skin depth arises are the 

following: (i) skin depth in cavity resonators, 

where the electric and magnetic fields in vacuum 

are out of phase and separated in space to produce 

a standing wave, (ii) penetration of magnetic field 

modulation through sidewalls of an EPR cavity, 

(iii) eddy currents arising from rapidly changing 

magnetic field gradients in a context of echo-planar 

imaging in MRI, where the analytical problem is 

similar to the field modulation problem, (iv) an 

aqueous sample in a microwave cavity, and (v) a 

surface coil that is positioned over tissue.  

 

 

THEORY 

 

The wavelength and attenuation of a wave in a 

isotropic linear dissipative medium, which includes 

conductors and lossy dielectrics, can be developed 

from the Maxwell equations (e.g. Ramo, Whinnery 

& Van Duzer, 1965). Ampere’s law and Faraday’s 

law can be written, respectively, as 
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where the usual variable definitions apply. Assum-

ing time harmonic fields, e
–iωt

, the constitutive 

relations B = µ0H and D = εE, and Ohm’s law, 

J = σE, we can combine Eqs. (2) and (3) to form 



84 Richard R. Mett et al. 

 EE 







+=×∇×∇

0

2

2

ωε

σ
ε

ω
i

c
r , (4)  

 

where c = (ε0µ0)
–1/2

 represents the speed of light in 

vacuum and εr = ε /ε0 is the relative dielectric con-

stant of the medium. On the right side of Eq. (4), 

there is competition between the displacement plus 

polarization currents, given by the term containing 

εr, and the conduction current, given by the term 

containing σ. The magnetic fields are governed by 

an equation of the same form as Eq. (4). The wave 

is thus electromagnetic. If we further assume a 

transverse plane wave type propagation,  
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Eq. (4) gives an expression for the wavenumber, 
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where the free space wavenumber k0 = ω/c is re-

lated to the free space wavelength λ0 = 2π/k0. 

 In a good conductor, we may neglect the polari-

zation plus displacement currents compared to the 

conduction current εr << σ/ωε0 and find 
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where the standard skin depth is given by Eq. (1). 

There, ω = 2πf. We see that for propagation of the 

wave through a conductor along z,  
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Table 1  Attenuation length and wavelength of various linear materials. 

 

 free 

space 

graphite AF-5 silver water 30% poly-

acrylamide gel 

f(MHz) λ(cm) δa(µm) λ(µm) δa(µm) λ(µm) δa(cm) λ(cm) δa(cm) λ(cm) 

0.1 300,000 6,600 42,000 200 1,300 27,000 33,000   

600 50 85 540 2.6 16 110 5.7   

1,200 25 60 380 1.8 12 16 2.8 2.0 3.4 

3,200 9.4 37 230 1.1 7.1 2.1 1.1   

9,500 3.2 21 130 0.65 4.1 0.28 0.39   

35,000 0.86 11 70 0.34 2.1 0.049 0.15   

94,000 0.32 6.9 43 0.21 1.3 0.025 0.088   

 

 

Table 2.  Conductivities and dielectric constants for the linear materials of Table 1. 

 free 

space 

graphite AF-5a silverb water 30% poly-

acrylamide gel 

f(MHz) εr σ(Ω−1m−1) σ(Ω−1m−1) εr εr 

0.1 78.2 + i 31.3b  

600 77.5 + i 1.24c  

1,200 77.0 + i 4.24c 49.5 + i 28.5d 

3,200 76.7 + i 12.6c  

9,500 63.0 + i 29.0c  

35,000 23.0 + i 31.1c  

94,000 

1 5.79×104 6.22×107 

9.00 + i 14.5c  

 
afrom Sheppard, Mathes & Bray (1987). 
bfrom Ramo, Whinnery & Van Duzer (1965). 
cfrom Weil, Bolton & Wertz (1994). 
dfrom Andreuccetti, Bini, Ignesti, Olmi, Rubino & Vanni (1988). 
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and the electric field attenuates by 1/e in a distance 

equal to the skin depth. At the same time, the wave 

has a wavelength given by 

  

 πδλ 2= . (9)  

  

 When we think of skin depth in a conductor, the 

attenuation length is readily understood, but the 

wavelength of the field oscillation is not. Such an 

oscillation is shown in Fig. 1, from a finite element 

simulation of an electromagnetic wave as it pene-

trates the conducting wall of the center section of a 

TE01U cavity (Hyde, Mett & Anderson, 2002). The 

simulation is for a cavity mode at 35 GHz. The 

cavity is represented by the region z < 0 and the 

silver conducting wall by z > 0. The magnetic field 

magnitude simultaneously oscillates and decays in 

the region z > 0, following Eq. (8). The skin depth 

for this case is 0.34 µm and matches the average 

attenuation shown in Fig. 1. The distance between 

the dips in the magnetic field magnitude represent 

the half-wavelength of the electromagnetic wave. 

A full wavelength of 2.1 µm ≈ 2πδ is visible. 

 In a lossy medium, the dielectric constant is 

often given real and imaginary parts (Von Hippel, 

1954), 
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where tan ζ is the loss tangent. In comparing Eq. 

(10) with Eq. (6), there is an equivalence of the 

conductivity (which is real) and the imaginary part 

of the dielectric constant. The conductivity equiva-

lent of an imaginary part of the dielectric constant 

is 
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whereas the imaginary dielectric constant equiva-

lent of a conductivity is  
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However, one may not write an equivalent skin 

depth as such because the real and imaginary parts 

of the wavenumber have different proportions, 

unlike Eq. (7). Substituting Eq. (10) into  

Eq. (6) and taking σ = 0, we find  
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Fig. 1.  Finite element simulation of the rf magnetic 

field penetration into a silver cylindrical TE01U uni-

form field mode cavity wall. The cavity radius was 

5.65 mm and the frequency was 35 GHz. A 0.1° cav-

ity sector was used, with the metallic wall taking up 

a surface of dimensions 10 µm × 10 µm and a depth 

of ten skin depths, 3.4 µm. The conductivity of silver 

was taken as 6.17×107 (Ωm)−1. 

 

 
 

Fig. 2.  Finite element simulation of a plane wave in vacuum incident normally on a slab of 30% polyacrylamide gel. 

Electric field magnitude in space is shown with white maximum and black minimum. The plane wave propagates 

from left to right and has a frequency of 1.2 GHz. The horizontal dimension of the polyacrylamide gel is 1.3 cm. The 

wavelength and attenuation length in the gel match the entries in Table 1. 
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The electric field in the lossy medium now can be 

written 
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which shows that the wavelength in the lossy me-

dium is given by 
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and the attenuation length by 
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The attenuation length given by Eq. (16) may be 

considered an equivalent skin depth, but the wave-

length given by Eq. (15) is not 2πδa. 

 

 

RESULTS 

  

The wavelength and attenuation length in different 

lossy media at various EPR operating frequencies 

have been calculated using Eqs. (15) and (16). 

Results are shown in Table 1 below. Conductivities 

and dielectric constants used to produce Table 1 

are given in Table 2.  

 The skin depth model applies when the perpen-

dicular field scale length or material surface geo-

metrical scale length a >> δ. The skin depth is the 

attenuation length of the current or field penetra-

tion into the conductor, but predicts nothing about 

the effect of those surface currents on the total 

surrounding field strength. Thus, any surface cur-

rent, including, but not limited to an eddy current, 

will have a skin depth. Time-varying currents in a 

conductor produce time-varying magnetic fields 

and these fields induce “eddy currents” in nearby 

conducters. Eddy currents can be produced by 

rapidly switching currents in gradient coils used in 

MRI and also by currents in magnetic field modu-

lation coils in EPR. When the time-changing mag-

netic fields are perpendicular to the surface of a 

conductor, the eddy currents reduce the magnetic 

fields from what they would be in the absence of 

the conductor and can also result in phase shifts. 

When the time-changing magnetic fields are paral-

lel to the surface, the eddy currents increase the 

field strength. Only eddy magnetic field compo-

nents parallel to the static field contribute deleteri-

ous effects in magnetic resonance. This reduces the 

number of design constraints. 

 In order to address questions of penetration and 

skin depth in conducting samples, finite element 

simulations were carried out using Ansoft High 

 

 

 Fig. 3.  Finite element simulation of a plane wave in vacuum with grazing incidence on a slab of 30% polyacrylamide gel. 

Electric field magnitude in space is shown with white maximum and black minimum. The plane wave propagates from 

left to right and has a frequency of 1.2 GHz. The horizontal dimension of the polyacrylamide gel is 1.3 cm. The wave-

length of the plane wave in vacuum decreases as it nears the gel interface and the wave enters the gel at an angle ap-

proaching 90°, as shown. The wavelength and attenuation length in the gel are the same as for normal incidence (Fig. 2) 

and again match the entries in Table 1. 
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Frequency Structure Simulator, version 9.2 (Ansoft 

Corp., Pittsburgh, PA) on a dual processor Com-

paq W8000 workstation, with two Intel Xeon 1.7 

GHz Pentium processors and 4 GB of RAM. 

 Figure 2 shows results of a finite element simula-

tion of the electric field magnitude of a 1.2 GHz 

plane wave in vacuum normally incident on a slab 

of 30% polyacrylamide gel. This material has di-

electric properties that are equivalent to biological 

tissue (Andreuccetti, Bini, Ignesti, Olmi, Rubino & 

Vanni, 1988). The wavelength and attenuation 

length are seen to match those given in Table 1. 

Figure 3 shows the electric field magnitude of a 

plane wave obliquely incident on a slab of 30% 

polyacrylamide gel. Here, the rf electric field of the 

incident plane wave is nearly perpendicular to the 

interface, while the rf magnetic field is tangential. 

Note that the vacuum wavelength shortens near the 

interface and, once entering the gel, the wave 

propagates in a direction nearly perpendicular to 

the interface. The wave in the gel is a plane wave, 

nearly identical to that of Fig. 2, and the wave-

length and attenuation length again match those 

given in Table 1.  

 Figure 4 shows the axial magnetic field phase (a) 

and magnitude (b) generated by a circular loop of 

wire near a cylinder of polyacrylamide gel. The 

loop is driven by a unit current at 1.2 GHz and has 

a diameter of 1.0 cm. The geometry is similar to 

that considered by Salikhov, Hirata, Walczak, and 

Swartz (2003). The axes of the loop and sample 

cylinder coincide and the loop location is 0.4 mm 

above the vacuum-gel interface. The ratio of di-

ameter to length of the sample is unity. A decrease 

of wavelength with sample size is evident from 

Fig. 4(a). For the 10 mm sample, much smaller 

than the wavelength of 34 mm (Table 1), the phase 

variation of the axial magnetic field through the 

sample is significantly less than that predicted by 

the plane wave model, 360° in one wavelength. 

However, for the 40 mm sample the phase goes 

through 180° in approximately one-half wave-

length. Evidently, when an object has a linear di-

mension equal to a wavelength or larger, the wave-

length in the material approaches the wavelength 

predicted by the plane wave model.  

 The corresponding magnitude dependence of the 

axial magnetic field attenuation as a function of 

sample size is shown in Fig. 4(b). A more complex 

dependency on the sample size is evident. The non-

monotonic behavior is caused by wave propagation 

in directions other than axial and by reflections 

from the interfaces. Strictly speaking, the plane 

wave model applies to transverse electric and mag-

netic fields, which, for axial propagation, have 

field components perpendicular to the axial mag-

netic field plotted in Fig. 4(b). Larger samples are 

likely required to show the attenuation lengths 

predicted by Table 1. Due to geometry, the at-

tenuation lengths apparent from Fig. 4(b) are sev-

eral times smaller than the 2.0 cm value predicted 

by the plane wave model. 

 Generally, a relatively small surface coil placed 

on a larger region of tissue results in the effects 

found in Fig. 4. For a cavity into which a sample 

has been inserted, this is not the case. In rectangu-

 
Fig. 4. Finite element simulations of the a) phase and b) magnitude of the axial magnetic field produced by a 1.0 cm di-

ameter loop of 0.8 mm diameter wire driven at 1.2 GHz and situated near a sample cylinder of 30% polyacrylamide gel. 

The field is plotted as a function of axial position with x = 0 as the location of the sample surface and x = −0.4 mm as 

the location of the loop. The loop axis coincides with the sample cylinder axis. In each case, the sample cylinder has a 

ratio of diameter to length of unity. The four cases correspond to four progressively larger sample sizes with diameters 

of 10, 20, 30, and 40 mm. 
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lar geometry, the wavenumber k inside the sample 

is related to its dielectric properties and the fre-

quency by the dispersion relation (see, e.g., Hyde 

& Mett, 2002; Mett & Hyde, 2003; Sidabras, Mett 

& Hyde, 2005), 
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which is equivalent to making the replacement 
222

zyx kkkk ++→ in Eq. (13). There are also 

constraints that relate the wavenumbers across the 

material interfaces. If two of the wavenumbers are 

zero (no field variation in these directions), the 

third wavenumber obeys Eq. (13) and the attenua-

tion length and wavelength discussion of the The-

ory section applies. The total variation of the fields 

across the different directions within the sample 

adjust to the constraint of Eq. (18). The wavenum-

bers are complex when the relative dielectric con-

stant is complex. In some cases, one or more of the 

wavenumbers may be predominantly imaginary, 

which implies an evanescent field variation in that 

direction. In the other directions, this produces a 

more rapid field variation than predicted by the 

Theory section. In other geometries, e.g. cylindri-

cal, dispersion relations similar to Eq. (18) apply.  

 

 

CONCLUSIONS 

 

We have examined skin depth in conductors and 

have extended the standard theory to cover lossy 

dielectrics, such as water and polyacrylamide gel. 

In a conductor, the fields simultaneously oscillate 

and decay with an attenuation length equal to the 

skin depth δ and a wavelength given by 2πδ. When 

the polarization and displacement currents become 

comparable to or greater than the conduction cur-

rents, as they are for most lossy dielectrics, the 

fields still simultaneously oscillate and decay, but 

the relationship between the attenuation length and 

wavelength is more complex than for a conductor, 

as shown by Eqs. (15) and (16). Wavelengths and 

attenuation lengths for different materials and EPR 

frequency bands are given in Table 1. A compari-

son of finite element simulations and the analytic 

estimates for the wavelength and attenuation length 

was made for four cases including: (i) field pene-

tration into a resonant cavity wall, (ii) a plane wave 

in vacuum normally and (iii) obliquely incident on 

polyacrylamide gel, and (iv) surface coil excitation 

of a cylindrical sample of polyacrylamide gel. 

Results indicate good agreement between the ana-

lytic predictions and the first three cases, but not 

for the fourth. For this case, the geometrical effects 

of boundaries cause the observed attenuation 

lengths and wavelengths to differ from the analytic 

predictions. The phase variation becomes close to 

180° in one half wavelength when the sample is 

comparable in size to a wavelength.  
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