A COMPARISON OF THE EFFECT OF CADMIUM, LEAD AND ALUMINUM ON MEMBRANE POTENTIAL IN CELLS OF

Nitellopsis obtusa

R. KURTYKA, Z. BURDACH, R. MIZERSKI, W. KARCZ

University of Silesia, Katowice, Poland

Effects of cadmium, lead and aluminum on membrane potential (MP) in internodal cells of *Nitellopsis obtusa* were studied. These metals are common pollutants which cause a number of toxic symptoms in plants. The standard electrophysiological technique was used for membrane potential measurements (Karcz & Stolarek, 1988, *Physiol. Plant.*, 74, 770; Stolarek & Karcz, 1987, *Physiol. Plant.*, 70, 473). Before the electrophysiological experiments the cells were preincubated within 2 hours in the dark in the solution of the following composition: 0.1 mM KCl, 0.1 mM CaCl₂, 1 mM NaCl. Subsequently, one internodal cell of *Nitellopsis obtusa* was transferred into a perfusion Plexiglass chamber and after stabilization of MP the bathing medium was changed for a new one, at the same salt concentration, containing additionally Cd, Pb or Al at final concentration in the range of 10⁻⁵ M to 10⁻³ M.

It was found that: (1) Cd, Pb and Al changed the value of membrane potential of *Nitellopsis obtusa* cells, which was depended on metal used and its concentration (2) in concentration of 10^{-3} M all metals caused depolarization of MP, whereas Pb in concentration lower then 10^{-3} M brought about membrane hiperpolarization (3) Cd and Al at 10^{-4} M caused membrane depolarization, whereas both metals at 10^{-5} M did not change MP.

Our data suggest that toxic effect of metals decreased in the order Cd > Al > Pb. It is suggest that toxic effect of Cd, Pb and Al might be, at least in part, caused via reduced plasma membrane H^+-ATP -ase activity.