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 Translational diffusion coefficient D of a protein in a solution depends both on temperature (T) and the protein’s volume fraction 
(Φ). At infinitely dilute solutions the translational diffusion coefficient Do(T) can be calculated from Stokes-Einstein formula, if the 
hydrodynamic radius of dissolved protein is known. For hydrated hen egg-white lysozyme this quantity is equal to 1.95 nm, and it 
gives Do(T) in the range from 6.89×10-11 m2/s (at 5oC) to 24.4×10-11 m2/s (at 55oC). For higher concentrations D can obtain from the 
relation: D(T,Φ) = Do(T)ηo(T)/η(T,Φ), where ηo(T) and η(T,Φ) are viscosities of water and solution, respectively, at temperature T. 
To obtain D(T,Φ) the viscosity of hen egg-white lysozyme aqueous solutions has been measured at temperatures ranging from 5oC to 
55oC and for volume fraction from 0.023 to 0.315. The dependence of D(T,Φ) – obtained indirectly on the basis of viscosity 
measurements - on Φ (at fixed temperature) has been analyzed on the basis of a stretched exponential function: D(T,Φ) = Do(T)exp(-
βΦν), where β and ν are scaling parameters. Both parameters decreases with increasing temperature: β from 13.2 (5oC) to 7.83 
(55oC) and ν from 1.4 (5oC) to 1.26 (55oC). The dependence of D(T,Φ) on T (at fixed volume fraction), in turn, has been analyzed on 
the basis of the Vogel-Tammann-Fulcher’s equation. 

 
 

INTRODUCTION 
 

One of the most important hydrodynamic parameter 
describing dynamic behavior of proteins in solution is 
translational diffusion coefficient D. To accomplish 
most of their physiological functions proteins have to 
meet and recognize each other. The random translational 
and rotational Brownian motion is necessary for it. An 
understanding of the translational diffusion phenomenon 
of proteins in solutions is needed to correctly modeling 
of passive intracellular transport. This process regulates 
such cellular functions as signal transduction (Cluzel et 
al., 2000) or kinetics of reaction (Berry, 2002). 
Intracellular protein diffusion plays also an important 
role in the transport of small molecules and ions (Gros 
& Moll, 1974). Translational diffusion coefficient can be 
experimentally obtained by using different experimental 
techniques such as fluorescence correlation spectroscopy 
(Banks & Fradin, 2005; Lavalette et al., 2006; Goins et 
al., 2008), light scattering (Saluja et al., 2007) or pulsed-
gradient NMR (Nesmelova et al., 2002; Lau & 
Krishnan, 2007; Rampp et al., 2000). Some theoretical 
methods for prediction of translational diffusion 
coefficient of proteins are also available (Young et al., 
1980; Tyn & Gusek, 1990; Aragon & Hahn, 2006). In 
the present study the translational diffusion coefficient 

of hen egg-white lysozyme (HEWL) in infinitely-dilute 
solutions has been obtained on the basis of the 
generalized Stokes-Einstein equation and for higher 
concentrations indirectly from viscosity measurements 
of aqueous solutions of HEWL. 
   HEWL is a small globular protein of the molecular 
mass M = 14 320 Da (Squire & Himmel, 1979) and 
well-known structure (Smith et al., 1993). It has been 
the subject of many physicochemical studies by using 
different experimental techniques for many years 
(Blanch et al., 2000; Gregory et al., 1993; Hadden et al., 
1995; Miura et al., 1994; Monkos, 1997; Smith et al., 
1995; Smyth et al., 2001; Turula & de Haseth, 1996) 
and it serves as a model protein for different biophysical 
studies. Some advanced theoretical methods have also 
been applied in those investigations (Halle & Davidovic, 
2003; Roth et al., 1996; Zhou, 1995). In this paper the 
translational diffusion coefficient – obtained indirectly 
from viscosity measurements - for HEWL in aqueous 
solutions (from diluted up to concentrated ones) at 
temperatures ranging from 5 to 550C is presented. 
Concentration dependence of such obtained translational 
diffusion coefficient is discussed by using a two 
parameters stretched exponential function. Temperature 
dependence, in turn, is analyzed on the basis of the three 
parameters Vogel-Tammann-Fulcher’s equation. Those 
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parameters have been obtained in the whole range of 
measured concentrations, and their physical meaning has 
been also discussed. 
 
 

MATERIALS 
 

Crystallized and highly purified HEWL was obtained 
from Sigma Chemical Co. and was used without further 
purification for all the measurements. From the 
crystalline state the material was dissolved in distilled 
water. Such obtained solutions were treated with filter 
paper in order to remove possible undissolved dust 
particles. The samples were cooled in a refrigerator until 
just prior to viscometry measurements, when they were 
wormed from 5 to 550C, mainly by steps of 50C. The pH 
values of such prepared solutions fluctuated slightly in 
the vicinity of neutral pH (7.0), i.e. were outside of 
isoelectric point. The isoelectric point for HEWL is in 
the range (11 – 11.2) (Young, 1963). 

 
 

VISCOMETRY  
 

The viscosity measurements were performed using an 
Ubbelohde-type capillary microviscometer with a flow 
time for water of 28.5 s at 250C. The microviscometer 
was placed in a water-bath controlled thermostatically at 
5 to 550C with a precision of ±0.1 0C. The upper limit of 
temperature has been established by the temperature of 
denaturation, which for HEWL is only slightly higher 
than 550C. The same viscometer was used for all 
measurements. Measurements started after several 
minutes delay to ensure the system reached equilibrium. 
Flow times were recorded to within 0.1 s and – for most 
concentrations – the viscosity measurements were 
conducted from 5 to 550C in 50C intervals. In this range 
of temperatures, the viscosity has been measured from 
diluted up to concentrated solutions, i.e. from 24.9 
kg/m3 to 343 kg/m3. Solution densities were measured 
by weighing, and protein concentrations were 
determined by a dry weight method in which samples 
were dried at high temperatures for several hours. 

 
 

RESULTS AND DISCUSSION 
 

At the first approximation, proteins – and, in particular, 
HEWL - in aqueous solutions can be treated as 
Brownian particles immersed in an ideal, homogeneous 
and isotropic solvent whose molecular size is so small 
that it can be practically regarded as continuous. 
Translational diffusion of such Brownian particles is 
driven by thermal energy and is hindered by friction 
experienced by the particles. In the case of solutions at 
infinite dilution the problem was studied by Einstein in 

his fluctuation-dissipation theory (Einstein, 1956). In 
this limit, interactions between immersed particles can 
be neglected and the interactions between the large 
particles and the solvent can be replaced by a randomly 
fluctuating forces. Einstein’s theory combined with the 
results of macroscopic continuum hydrodynamics 
(Landau & Lifshitz, 1958) gives - for the translational 
diffusion coefficient of spherical particles at infinite 
dilution - the so-called Stokes-Einstein relation: 
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where k is Bolzmann’s constant, T is the absolute 
temperature, ηo(T) is the solvent viscosity and Rh is the 
hydrodynamic radius of the immersed particles. For a 
spherical particle, the hydrodynamic radius Rh is equal 
to its radius. 
   The diffusion of ellipsoidal particles was studied by 
Perrin (Perrin, 1936). For particles with a shape of 
prolate ellipsoid, the hydrodynamic radius is expressed 
as: 
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where a and b are the major and minor semi-axes of the 
ellipsoid. For some proteins in the native state has been 
experimentally showed that the hydrodynamic radius 
does not depend on solution pH and temperature 
(Jachimska et al., 2008). Equation (1) for non-spherical 
particles is called generalized Stokes-Einstein relation. 
   As revealed from X-ray diffraction studies of HEWL 
in crystals, its molecules can be treated as prolate 
ellipsoids of revolution with the main semi-axes 2.25 
nm and 1.5 nm (Squire & Himmel, 1979). However, the 
protein molecules in solution are surrounded by a 
hydration shell of water molecules which have to be 
taken into account in calculations of some 
hydrodynamic parameters including hydrodynamic 
radius. The level of protein hydration – usually marked 
by δ - denotes the amount of grams of water associated 
with the protein per a gram of the protein. For HEWL 
the full hydration is achieved at δ = 0.38 (Gregory et al., 
1993; Pérez et al., 1999). The hydrodynamic volume of 
one dissolved protein molecule in aqueous solution V is 
a sum of a volume of the unhydrated protein Vo and a 
volume of the hydration shell: V = Vo + Mδ/NAρw, 
where NA and ρw are Avogadro’s number and water 
density, respectively. It gives the hydrodynamic volume 
of HEWL molecule V = 30.24 nm3. On the other hand, 



Karol Monkos                                                                                 3 

analysis of viscosity data of HEWL aqueous solutions 
shows that the axial ratio of hydrated lysozyme 
molecule is p = 1.35. Because the volume of an ellipsoid 
of revolution is V = 4/3πab2, then its semi-axes can be 
obtained from: b =(3V/4πp)1/3 and a = pb. It gives for 
hydrated molecule of HEWL a = 2.36 nm and b = 1.75 
nm. One layer of water increases a dimension of the 
protein semi-axis by approximately 0.3 nm. So, the 
above results show that the hydration shell of water on 
the surface of HEWL molecule is not a uniform 
monolayer but is rather a patchwork of water clusters, 
covering some atoms in charges groups by water layer 
while leaving some part of the protein surface 
uncovered. 
   From the above calculated values of the semi-axes and 
from relation (2) it is easy to obtain the hydrodynamic 
radius of hydrated HEWL molecule: Rh = 1.95 nm. 
Taking the values of water viscosity ηo from the 
standard physicochemical tables, one can now calculate 
- from Stokes-Einstein relation – the translational  
diffusion coefficient of HEWL in the limit of infinite 
dilution. The results are gathered in Table I. It is 
interesting to compare them with the values obtained 
from different experimental method. In the literature, 
experimental values of the translational diffusion 
coefficient are usually given at infinite dilution and at 
the temperature 20oC. As seen in Table I the Stokes-
Einstein relation gives - in this case - for HEWL Do(T) = 
11.0×10-11 m2/s. The literature values of Do(T) for 

HEWL are as follows: 10.6×10-11 m2/s (Dubin et al., 
1971), 10.9×10-11 m2/s (Allison & Tran, 1995), 11.1×10-

11 m2/s (Banachowicz et al., 2000), 11.2×10-11 m2/s 
(Saphianopoulos et al., 1962). It proves that the 
translational diffusion coefficient calculated from the 
Stokes-Einstein relation with the hydrodynamic radius 
obtained from Perrin formula for hydrated protein agrees 
very well with the experimental results obtained in the 
limit of infinite dilution. 
 

Table 1. The numerical values of the translational diffusion 
coefficient for hen egg-white lysozyme in aqueous solutions 
calculated on the basis of relation (1). 

t[oC] 1011×Do [m2/s] 
5 6.89 
10 8.14 
15 
20 
25 
30 
35 
40 
45 
50 

9.50 
11.0 
12.5 
14.2 
16.0 
18.0 
20.0 
22.1 

55 24.4 
 

   To understand the diffusion process of proteins inside 
cells the knowledge about proteins diffusivity in 
concentrated solutions is necessary. The first 
measurements of the translational diffusion coefficient 

 
Table 2. The numerical values of the translational diffusion coefficient (in 10-11 m2/s) for hen egg-white lysozyme in aqueous 
solutions obtained indirectly from viscosity measurements and relation (3) for all measured concentrations. 

c[kg/m3] 5oC 10oC 15oC 20oC 25oC 30oC 35oC 40oC 45oC 50oC 55oC 
 
24.9 
35.3 
42.6 
50.9 
63.3 
70.6 
76.8 
83.1 
92.4 
106 
109 
150 
202 
209 
239 
257 
296 
322 
343 

 
6.14 
5.94 
5.80 
5.61 
5.27 
5.18 
4.90 
4.82 
4.59 
4.24 
4.23 
3.27 
2.19 
1.94 
1.45 
1.10 
.657 
.305 
.144 

 
7.29 
7.07 
6.87 
6.66 
6.27 
6.13 
5.85 
5.73 
5.48 
5.10 
5.04 
3.97 
2.72 
2.45 
1.86 
1.45 
.922 
.470 
.244 

 
8.52 
8.28 
8.04 
7.85 
7.39 
7.19 
6.89 
6.72 
6.43 
6.01 
5.94 
4.71 
3.32 
2.99 
2.33 
1.85 
1.23 
.668 
.376 

 
9.87 
9.55 
9.34 
9.06 
8.54 
8.37 
7.97 
7.82 
7.49 
6.98 
6.92 
5.54 
3.98 
3.59 
2.85 
2.31 
1.59 
.912 
.543 

 
11.4 
11.0 
10.7 
10.4 
9.77 
9.64 
9.18 
8.99 
8.62 
8.10 
7.98 
6.43 
4.71 
4.27 
3.44 
2.82 
1.99 
1.20 
.751 

 
12.9 
12.6 
12.2 
11.9 
11.3 
11.0 
10.5 
10.3 
9.86 
9.25 
9.15 
7.46 
5.49 
5.02 
4.07 
3.38 
2.44 
1.53 
.996 

 
14.5 
14.1 
13.8 
13.5 
12.8 
12.4 
11.9 
11.7 
11.2 
10.5 
10.4 
8.52 
6.34 
5.81 
4.78 
3.98 
2.94 
1.90 
1.27 

 
16.4 
15.8 
15.5 
15.0 
14.5 
14.0 
13.4 
13.2 
12.7 
11.8 
11.7 
9.63 
7.22 
6.66 
5.51 
4.65 
3.49 
2.31 
1.60 

 
18.2 
17.5 
17.2 
16.8 
16.0 
15.7 
15.0 
14.7 
14.1 
13.2 
13.1 
10.8 
8.20 
7.53 
6.31 
5.34 
4.08 
2.76 
1.96 

 
20.0 
19.5 
19.0 
18.6 
17.9 
17.4 
16.7 
16.2 
15.7 
14.8 
14.7 
12.1 
9.22 
8.52 
7.16 
6.10 
4.71 
3.24 
2.34 

 
21.9 
21.2 
20.8 
20.3 
19.5 
19.0 
18.3 
17.8 
17.3 
16.2 
16.0 
13.3 
10.2 
9.48 
7.94 
6.80 
5.28 
3.67 
2.69  

of proteins at high concentrations have been made for 
ovalbumin (Wang et al., 1954). The results of the 
investigations of proteins diffusion in concentrated 
solutions for other proteins are also available in the 

literature (Nesmelova et al., 2002; Gros, 1978 and 
references therein). Wang et al also proposed to use the 
Stokes-Einstein relation to obtain the translational 
diffusion coefficient at high concentrations. To do it, the 



4                            c,T – dependence of the translational diffusion coefficient for lysozyme 

viscosity ηo in the Stokes-Einstein relation should be 
replaced rather by the macroscopic solution viscosity 
η(c,T). So, the following relation should be fulfilled: 
 

     ( )3
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   Correctness of the above equation has been 
successfully verified for different proteins by Gros 
(Gros, 1978). On the basis of relation (3) the 
translational diffusion coefficient of HEWL in the whole 
range of measured concentrations and temperatures has 
been calculated and the results are presented in Table II. 
It is worth to note that correctness of the above equation 
has quite recently been also verified by Lavalette 
(Lavalette et al., 2006). The authors showed that 
equation (3) is correct only in the case when the size of 
solvent molecules is negligible in comparison to the size 
of dissolved particles. In the case when the local 
viscosity is induced rather by the presence of 
macromolecular co-solutes such as proteins, RNA’s etc. 

with a large molecular mass dispersion, the relation of 
the form D = Do(ηo/η)q is fulfilled. Experimentally has 
been proved that the exponent q ≤ 1 and it depends on 
the co-solvent’s dimension and mass. The deviations 
from relation (3) appear when the molecular mass of co-
solvent is higher than 103 Da and become more distinct 
as the molecular mass of the co-solvent increases. 
   In the case of dilute solutions the translational 
diffusion coefficient of dissolved particles depends 
linearly on concentration, and it is usually presented in 
the following equation (Brown & Stilbs, 1982; Han & 
Herzfeld, 1993; Xia et al., 1994): 
 
   ( )4)K1)(T(D)T,c(D Do Φ−=  
 
where the coefficient KD is a measure of interparticle 
interaction and Φ denotes the volume fraction of the 
particles. The volume fraction can be expressed in the 
following way: Φ = NAVc/Mh where Mh denotes the 
molecular mass of hydrated particles and c is 
concentration in kg/m3. 

 

 
 

Fig. 1. Plot of the translational diffusion coefficient vs. volume fraction of hen egg-white lysozyme in aqueous solutions at T = 328 K (•), T 
= 303 K (▲) and T = 278 K (♦). Experimental points were obtained indirectly from viscosity measurements and equation (3); the straight 
lines show the fit according to equation  (4) with the parameters: Do(T) = 23.9×10-11 m2/s, KD = 3.26 at T = 328 K; Do(T) = 14.2×10-11 
m2/s, KD = 3.55 at  T = 303 K; Do(T) = 6.78×10-11 m2/s, KD = 3.79 at T = 278 K. 

 
   As mentioned above, protein molecules in water 
solution are surrounded by a hydration shell of water 

molecules. The “bound” water molecules migrate with 
the protein and therefore contribute to its hydrodynamic 
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mass. This quantity can be expressed as a sum of the 
molecular mass of unhydrated protein M and the mass of 
hydration shell: Mh = M(1 + δ). For HEWL M = 14 320 
Da, δ = 0.38 and it gives Mh = 19 762 Da. So, in this 
case the volume fraction one can calculate in the 
following way: Φ = 9.22×10-4 m3/kg ×c. Analysis of the 
obtained values of the translational diffusion coefficient 
for HEWL shows that – in the whole range of measured 
temperatures – D(c,T) depends linearly on concentration 
up to Φ ≅ 0.1 (it corresponds to the concentration of 
about 109 kg/m3), with the correlation coefficient r = 
0.999. For three temperatures it is shown in Figure 1. As 
seen the slope of the straight lines changes with 
temperature: the lower temperature the higher rate of 
decreasing of translational diffusion coefficient with 
increasing of the volume fraction is. For spherical 
particles the coefficient KD should be equal to 1.5 

(Brown & Stilbs, 1982). For HEWL, this quantity 
changes from 3.79 (5oC) to 3.26 (55oC). It indicates that 
the rate of decreasing of translational diffusion 
coefficient with increasing of the volume fraction is 
higher for aspherical particles than for spherical ones. 
   For higher concentrations the dependence of the 
translational diffusion coefficient of proteins on 
concentration becomes non-linear. In the whole range of 
measured concentrations this dependence can be 
described be a stretched exponential function (Banks & 
Fradin, 2005; Dwyer & Bloomfield, 1993; Goins et al., 
2008): 
 
    ( ) ( )5exp)T(D)T,c(D o

νΦβ−=  
 
where β and ν are scaling parameters. 

 

 
 

Fig. 2. Plot of the translational diffusion coefficient vs. volume fraction of hen egg-white lysozyme in aqueous solutions at T = 328 K (•), T 
= 303 K (▲) and T = 278 K (♦). Experimental points were obtained indirectly from viscosity measurements and equation (3); the curves 
show the fit according to equation (5) with the parameters: Do = 24.4×10-11 m2/s, β = 7.83 and ν = 1.26 at T = 328 K; Do = 14.2×10-11 m2/s, 
β = 9.76 and ν = 1.33 at T = 303 K; Do = 6.89×10-11 m2/s, β = 13.2 and ν = 1.40 at T = 278 K. 

 
   Figure 2 shows a plot of the translational diffusion 
coefficient vs. volume fraction for HEWL in the whole 
range of measured concentrations. The curves show the 
fit to the experimental points obtained using above 
relation with β and ν treated as adjustable parameters. 
The numerical values of those parameters obtained in 
such a way are presented in Table III. As seen both 

parameters decrease with increasing temperature. 
Unfortunately, their physical meaning is not clear. Some 
results suggest only that ν should decrease as the 
polymer molecular mass increases (Banks & Fradin, 
2005). So, experimental values of both parameters for 
different proteins are highly desirable.  
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Table 3. The numerical values of the scaling parameters from equation (5) for hen egg-white lysozyme. 

t[oC] 5 10 15 20 25 30 35 40 45 50 55 
 
β 
 
 
ν 

 
13.2 
±1.3 

 
1.40 
±.05 

 
12.2 
±1.1 

 
1.38 
±.05 

 
11.5 
±.97 

 
1.37 
±.04 

 
10.7 
±.87 

 
1.35 
±.04 

 
10.1 
±.78 

 
1.33 
±.04 

 
9.76 
±.70 

 
1.33 
±.04 

 
9.39 
±.66 

 
1.32 
±.04 

 
9.00 
±.60 

 
1.31 
±.03 

 
8.56 
±.56 

 
1.30 
±.03 

 
8.29 
±.54 

 
1.29 
±.03 

 
7.83 
±.53 

 
1.26 
±.03  

 
   Temperature dependence of the translational diffusion 
coefficient is usually described by the Vogel-Tammann-
Fulcher equation (Lau & Krishnan, 2007; Rampp et al., 
2000). With modification made by Angell (Angel, 
1988), it has the form: 
 

     ( )6
)c(TT
)c(T)c(F

exp)c(A)T,c(D
o

o
⎥
⎦

⎤
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⎣

⎡
−
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where A(c), F(c) and To(c) are parameters which 

depends on concentration. To fit the translational 
diffusion coefficient from the above equation to the 
experimental values of D(c,T) obtained at different 
temperatures the numerical values of these parameters 
are necessary. They have been calculated – for each 
fixed concentration - by using the non-linear least square 
method. Figure 3 shows the values of the translational 
diffusion coefficient at various temperatures for HEWL, 
for three concentrations. The curves present the fit to the 
experimental points according to the above equation. As 

 
 

 
 

Fig. 3. Temperature dependence of the translational diffusion coefficient of hen egg-white lysozyme in aqueous solutions for concentrations: 
c → 0 (×), 109 kg/m3 (Δ) and 257 kg/m3 (•). The numerical values of D(c,T) for c = 109 and 257 kg/m3 were obtained indirectly from 
viscosity measurements and relation (3). The curves show the fit obtained by using equation (6) with the parameters:  A = 6.05×10-9 m2/s, 
B = 3.77 and To = 151 K (c → 0); A = 4.57×10-9 m2/s, B = 3.83 and To = 153 K (c = 109 kg/m3); A = 1.36×10-9 m2/s, B = 2.01 and To = 
196 K (c = 257 kg/m3). 

 
seen a very good fit over the whole range of 
temperatures has been obtained. The parameters A(c), 
F(c) and To(c) appear to be dependent on concentration 

in a quite different way and the results of calculations 
for F(c) and To(c) are shown in Figure 4. 
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Fig. 4. Plot of the ideal glass transition temperature To(c) (•) and fragility parameter F(c) (Δ) versus concentration, for hen egg-white 
lysozyme aqueous solutions. 

 
   The parameter A(c) represents the high-temperature 
limit of the translational diffusion coefficient. As 
appears, for dilute solutions A(c) increases with 
increasing concentration from 4.77×10-9 m2/s to 
5.91×10-9 m2/s, and for semi-diluted and concentrated 
solutions decreases with increasing concentration to the 
value 5.51×10-8 m2/s (at c = 343 kg/m3) in rather an 
unsystematic fashion. 
   To represents the ideal glass-transition temperature, i.e. 
the temperature in which the molecular mobility of 
supercooled liquid is completely stopped. The 
theoretical basis of the Vogel-Tammann-Fulcher 
equation is the theory of entropy worked out by Adam 
and Gibbs (Adam & Gibbs, 1965). The theory uses the 
notion of the configurational entropy: Sc = klnΩ where 
Ω denotes the number of configurations available to the 
system of N molecules. By assuming that a liquid’s flow 
requires collective rearrangements of some number of 
molecules and that the energy required to such 
rearrangements increases in proportion to this number, 
the authors obtained – at the equilibrium state – the 
Vogel-Tammann-Fulcher equation. The ideal glass 
transition temperature is then identified with the so 
called Kauzmann temperature, i.e. the temperature 

where configurational entropy is equal to zero. As seen 
in Figure 4, the ideal glass transition temperature for the 
solutions of hen egg-white lysozyme decreases linearly 
with increasing concentration in the range of dilute 
solutions, and increases with increasing concentration in 
the region of semi-diluted and concentrated ones. 
Contrary to this, the ideal transition temperature 
obtained for aqueous solutions of some carbohydrate 
(Rampp et al., 2000), porcine serum albumin (Monkos, 
2003), human serum albumin (Monkos, 2004) and 
dimeric bovine β-lactoglobulin (Monkos, 2008) depends 
– in the whole range of measured concentrations – non-
linearly on concentration. Because of lack of any 
theoretical explanation of such changes, for porcine and 
human serum albumin and for dimeric bovine β-
lactoglobulin some phenomenological description of 
such dependence has only been proposed. 
   The parameter F(c) has been originally introduced by 
Angell (Angell, 1988) for glass-forming liquids in order 
to differentiate their various temperature dependences of 
viscosity. According to this conception ‘strong’ liquids 
have highly constrained structures which have a low 
density of configurational states and their viscosity does 
not decrease much with increasing temperature above 



8                            c,T – dependence of the translational diffusion coefficient for lysozyme 

glass transition temperature. The ‘fragile’ liquids, in 
turn, have relatively unconstrained structures, so that 
many configurations become available to them as the 
temperature raises and they show a strong decline of 
viscosity with increasing temperature. Figure 4 shows 
numerical values of the fragility parameter obtained for 
HEWL on the basis of Vogel-Tammann-Fulcher’s 
equation. As seen, in this case F(c) increases linearly 
with increasing concentration in the range of dilute 
solutions, and decreases with increasing concentration in 
the region of semi-diluted and concentrated ones. All 
values of fragility parameter lie in the range from 1.34 to 
4.47 and it indicates that the studied solutions belong to 
the extremely fragile class of liquids. For the extremely 
strong liquids, the fragility parameter reaches the value 
of about 100. 

 
 

CONCLUSIONS 
 

   Translational diffusion coefficient in the limit of zero 
concentration obtained for HEWL in aqueous solution 
from Stokes-Einstein equation with the hydrodynamic 
radius calculated on the basis of Perrin formula agrees 
very well with its values obtained from different 
experimental techniques. This quantity changes with 
temperature from 6.89×10-11 m2/s (5oC) up to 24.4×10-11 
m2/s (55oC). Translational diffusion coefficient obtained 
here indirectly from viscosity measurements, in the 
range of dilute solutions - i.e. when the volume fraction 
of HEWL does not exceed the value of approximately 
0.1 - decreases approximately linearly with increasing 
concentration. Linear regression coefficient changes in 
this case with temperature from 3.79 (5oC) up to 3.26 
(55oC). However, concentration dependence of such 
obtained translational diffusion coefficient in the whole 
range of concentrations, i.e. from dilute to concentrated 
solutions is non-linear and can be described by a 
stretched exponential function. Two parameters in this 
function also decrease with increasing temperature. 
Temperature dependence of such translational diffusion 
coefficient, in turn, can be described by the three 
parameters Vogel-Tammann-Fulcher equation. 
However, the parameters of this equation - for HEWL - 
depends on concentration in rather an irregular manner. 
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