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A general theory of Electron Spin Resonance (ESR) lineshape analysis is presented. The theory concerns high-spin systems, for 
which the dominating contribution to the electron spin dynamics is provided by zero-field splitting. The approach is based on a full 
solution of the stochastic Liouville - von Neumann equation, and, in consequence, it is valid for arbitrary motional conditions and 
interaction strengths. 
 
 

INTRODUCTION 
 

Perturbation approaches give a valuable insight into 
electron spin relaxation, but many systems violate the 
assumptions of the perturbation theory (Slichter, 1990; 
Kruk, 2007). Very often amplitudes of the zero field 
splitting and the Zeeman interaction combined with 
motional conditions bring the electron spin beyond the 
validity regimes of Redfield relaxation theory (Slichter, 
1990) requiring that the amplitude of the interaction 
causing relaxation multiplied by the characteristic 
correlation time gives a value much smaller than one, 
and then the spin relaxation times cannot be explicitly 
defined. This fact has led to developing general (slow 
motion) treatments based on the stochastic Liouville 
equation (SLE). The name “slow motion” originates 
from the situation when the mean interaction strength is 
larger than, or comparable to, the inverse of the 
correlation time that corresponds to the motion 
modulating the interaction. The methods based on the 
stochastic Liouville equation were introduced by Freed 
and co-workers (Freed, 1976; Schneider & Freed, 1989) 
to describe ESR lineshapes for systems with the electron 
spin quantum number 2/1=S , including interactions 
with neighbouring nuclear spins under very general 
anisotropic motional conditions.  In this work we 
propose an extension of this treatment to an arbitrary 
electron spin quantum number.   

 
 

 
 
 

SPIN HAMILTONIAN 
 

The total electron spin Hamiltonian, ( )SH  can be 
decomposed into a sum of three main terms in the 
following way: 
 

( ) ZFSHCZ HHHSH ++=                 (1)
       

The first term, ZH , describes the Zeeman interaction 
and includes the g-tensor (or g-factor if the tensor is 
isotropic). In the last case this term has the simple form, 

zSZ SH ω= ,  where Sω  is the electron frequency. The 
second term, HCH , describes the hyperfine coupling 
between the electron spin and the metal nucleus. The g-
anisotropy and the hyperfine coupling are most 
important for 2/1=S ; they are the predominant 
mechanisms for the spin relaxation. These mechanisms 
may be of importance for high-spin systems if the 
ground state is an S state, which is the case for Mn2+ 
(S=5/2). The third term, ZFSH , describes the zero-field 
splitting (ZFS), which is present for electron spin 
systems of 2/1>S  and in most cases dominates the spin 
dynamics. The origin of the ZFS interaction for 
transition metal complexes is due to the second-order 
effects of the spin-orbit coupling. However, for other 
systems such as radicals, a direct dipole-dipole 
interaction between the unpaired electrons leads to the 
ZFS (Griffith, 1961). The formal expression of the ZFS 
Hamiltonian is the same irrespective of the physical 
origin. In the principal axis system of the ZFS tensor (P) 
it takes the form: 
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where the quantities D  and E  describe the axial and 
rhombic components of the static (permanent) ZFS 
tensor, respectively (here we limit ourselves to the 
second order terms). The tensor operators are defined as: 
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. For a detailed treatment of the ZFS 

the reader is referred to (Rudowicz & Misra, 2001). The 
explicit form of ( )P

ZFSH  depends on the symmetry of the 
complex given by a point symmetry group (Rudowicz & 
Gnutek, 2009). The symmetry of the ligand field also 
plays an important role for the degeneracy of the 
electron spin energy levels. For example, complexes of 

1=S  and 2/3=S  with cubic symmetry have no static 
component of the ZFS, hence the S  manifold is not 
split. A fluctuating ZFS is, however, always present for 

1≥S , which temporarily lifts the degeneracy. 
Physically, the fluctuating (transient) ZFS is due to 
deformations in the ligand framework, which is caused 
by collisions of solvent molecules, by damped vibrations 
in the complex, and by any other local motion that 
causes the ZFS to fluctuate in time.  The total ZFS 
Hamiltonian, can then be decomposed into the static, 

S
ZFSH ,  and transient,  T

ZFSH , parts: 
 

T
ZFS

S
ZFSZFS HHH +=     (3) 

 
The forms of the static and transient ZFS (in the 
laboratory frame, i.e. the frame determined by the 
external magnetic field) depend on the assumed models 
of motion (Kruk, 2007; Rudowicz & Misra, 2001; 
Rudowicz & Gnutek, 2009). Since the static zero field 
splitting is a part of the entire ZFS, obtained as a result 
of averaging over molecular distortions (vibrations), it is 
only mediated by the molecular tumbling 
(reorientational motion).  This implies that the static 
ZFS becomes time dependent in the laboratory (L) 
frame:   
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Here (Ps) indicates the principal axis system of the static 
ZFS tensor, while 

SD  and SE  denote the axial and 
rhombic component of the static ZFS. The 
reorientational motion mediating this interaction is 
modeled as isotropic rotational diffusion. The relative 
orientation of the (Ps) and (L) frames is described by the 
angle ( )tLPS

Ω , ( ( )γβα ,,≡Ω ) which varies in time due to 
this isotropic molecular tumbling. The simplest possible 
model (and therefore often used) of the transient ZFS 
assumes that has a constant magnitude and a principal 
direction (a principal axis system ( TP )), which is not 
fixed in the molecule (Kruk, 2007; Nilsson & 
Kowalewski, 2000; Kowalewski, Kruk & Parigi, 2005). 
The ( TP ) frame changes its orientation relative to the 
( SP ) frame according to rotational diffusion equation 
(Kruk, 2007; Rudowicz & Misra, 2001; Rudowicz & 
Gnutek, 2009). Therefore this model is referred to in the 
literature as the ‘pseudorotational model’. For the 
purpose of evaluating ESR spectra one has to consider 
the transient ZFS in the laboratory frame, performing a 
two step transformation, explained in Fig. 1 and Fig. 2. 
 
 
 
 
 
 

 
Fig. 1. Representation of the static and transient ZFS interactions 

depending on the reference frames. 
 

The first transformation is between the ( TP ) and ( SP ) 
frames through the Euler angle ( )t

ST PPΩ  affected by the 
distortional motion, while the second transformation 
occurs between the ( SP ) and laboratory (L) frames via 
the Euler angle ( )tLPS

Ω  modulated by the molecular 
tumbling. The three relevant coordinate systems and the 
corresponding representations of the static and transient 
ZFS are presented in Fig. 2. 
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Fig. 2. A schematic view of the ZFS terms. The static ZFS 
interaction is defined as the averaged part of the entire ZFS 
interaction considered in a molecule fixed frame (M). For 
simplicity we have assumed that the molecular frame (a 
reference frame fixed in the molecule) coincides with the 
principal axis system of the static ZFS). The transient ZFS 
represents the momentary deviation of the ZFS interaction 
from its averaged value. 

 
These two transformations lead to the following form of 
the transient ZFS Hamiltonian in the laboratory frame: 
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Here TD  and TE  denote the axial and rhombic 
components of the fluctuating ZFS. 
 
 

THEORETICAL BACKGROUND OF THE 
SPECTRAL ANALYSIS 

 
 An ESR lineshape function ( )ωω −SL  is determined by 
the spectral density:   
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∞
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111,1 exp0                  (6) 

( ( ) ( )ωωω 1,1 −−∝− sL S ) corresponding to the single-
quantum spin transitions (Kruk, 2007).  More explicitly 
the lineshape function is given as (Kruk, 2007): 
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The lattice Liouville operator, LL̂̂ , contains all degrees 
of freedom that are relevant for the ESR spectrum: 

( ) RD
T
ZFS

S
ZFSZL LLLLSLL ˆ̂ˆ̂ˆ̂ˆ̂ˆ̂ˆ̂ ++++= . The contributing 

operators represent the Zeeman interaction for the spin 
S, the static and transient zero field splitting, distortional 
and rotational motions of the complex. According to the 
pseudorotational model (Kruk, 2007; Nilsson & 
Kowalewski, 2000; Kowalewski et al., 2005) 
incorporated into the slow motion theory, the 
pseudorotational diffusion modulating the orientation of 
the principal axis system of the transient ZFS with 
respect to a molecule fixed frame is supposed to reflect 
any distortional motion of the molecule leading to 
stochastic fluctuations of the transient ZFS tensor.   
The superoperator ESRM̂̂  originating from the Liovilian 
is defined as [3]:   
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The matrix form of the 

ESRM̂̂  operator is set up in a basis 

){ }iO  given as an outer product of vectors associated 
with the degrees of freedom of the system: 

) ) ) )σΣ⊗⊗= LKMABCOi
 [3,10,11] with the 

distortional, rotational and spin components )ABC , 

)LKM  and )σΣ , respectively. 
Some examples of ESR spectra calculated in this way 
are shown in Fig. 3. 
After having explained the general approach we shall 
comment in more detail about the validity regimes of the 
perturbation approach. 
 
 

LIMITATIONS OF THE PERTURBATION 
APPROACH 

 
One can provide an analytical description of the ESR 
lineshape only if the spin system is within the Redfield 
limit (Slichter, 1990; Kruk, 2007). This means that the 
product of the amplitude of the static ZFS and the 
rotational correlation time, R

S
ZFSτω , is crucial for the 

explicit, clear definition of the electron spin relaxation. 
ESR spectra are collected at rather high magnetic fields 
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compared to NMR experiments. The so called X band 
corresponds to the magnetic field of 0.3-0.35T, while 
the Q and W bands are measured at 1.1-1.3T and 3.3-
3.5T, respectively. Therefore, if the condition 

1<<R
S
ZFSτω  is fulfilled, the static ZFS provides, beside 

the transient ZFS (if 1<<D
T
ZFSτω ) a relaxation channel 

for the electron spin. In this case the operator 
ESRM̂̂  takes 

the form:  
 

( ) ( )( ) ( )( ) 1̂̂ˆ̂ˆ̂ˆ̂ˆ̂ ωωωω iRRLiM S
TS

ZFSS
SS

ZFSSZESR −++−=        (9) 
 
In the opposite motional regime, when the molecular 
frame (the principal axis system of the static ZFS tensor) 
is fixed relative to the laboratory frame, the static ZFS 
modifies the energy level structure of the electron spin. 
One can argue that typically the amplitude of the static 
ZFS is rather small comparing to the amplitude of the 
Zeeman coupling for the magnetic field at which the 
ESR spectra are measured and therefore it can be 
neglected altogether. This way of thinking is quite 
dangerous. It is not enough to compare just the 
amplitudes of the ZFS and Zeeman couplings. 
The vector [ ]1

1−S  contains expansion coefficients of the 
tensor operator 1

1−S  in the basis ){ }iO . In fact, there is 
just one non-zero coefficient, namely the one associated 
with the basis vector ) ) ) ) ) )11000000 −=ΣσLKMABC . 

Thus the ESR lineshape is determined by one element of 
the inverted matrix 1ˆ̂ −

⎥⎦
⎤

⎢⎣
⎡

ESRM .  The parameters are typical 

for Gd3+ complexes used as contrast agents in NMR 
tomography.  

To be sure that the effect of the static ZFS is 
negligible one has to take into account how these two 
interactions influence the electron spin energy levels. To 
illustrate this statement let us consider the case of 

2/7=S . To simplify the problem, we assume that the 
molecular and the (Ps) frames coincide. The basis 
appropriate for the spin quantum number  2/7=S  
consists of ( ) 812 =+S  functions formed by the Zeeman 
states { }Sm  ( Sm  is the magnetic spin quantum number). 

The matrix element of the static Hamiltonian SH 0  
including the Zeeman coupling as well as the static ZFS, 

( ) S
ZFSZ

S HSHH +=0  taken between the states of 
2
1

=Sm  is 

equal to: 
SS

S DH ω
2
15

2
1

2
1

0 +−=
. 

One can see from this expression that the real effect of 
the static ZFS is by factor 10 higher than one could 
expect comparing only the strengths of the two terms. 
This example should be treated as a warning that a 
relatively weak interaction can alter significantly the 

energy level structure and such effects have to be always 
treated with caution.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3. Examples of ESR spectra, TS DD ,  - axial parts of the 

static and transient zero field splitting, respectively, Rτ  - 

rotational correlation time, Dτ  - distortional correlation time. 
 

 
When the static ZFS tensor is fixed with respected to 

the laboratory frame, the operator 
ESRM̂̂  must be defined 

for every molecular orientation. It includes then the 
main Liouvilian ( ) S

ZFSS
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Z

S LLL ˆ̂ˆ̂ˆ̂
0 += ω  and the relaxation 

operator ( )TS
ZFSR̂̂  representing the transient ZFS relaxation 

mechanism (if 1<<D
T
ZFSτω ):  
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Then, the evaluation of the ESR lineshape should be 
quite straightforward, even though we have to include 
the static ZFS. For this purpose, one has to calculate the 
projection vector [ ]1

1−S  containing the expansion 
coefficients of the electron spin operator −S  into the 
Liouville basis constructed from the eigenvectors of the 
main Hamiltonian SH0 . The eigenvectors are given as 
combinations of the Zeeman functions { }Sm  mixed up 
due to the static ZFS contributing to the main 
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Hamiltonian, which determines the energy level 
structure of the system. In consequence, the 
representations of the operators −S  and ZS  can contain 
some common elements, '

SS mm . This implies that the 

spin-spin and spin-lattice relaxation processes cannot be 
treated as independent processes. Thus, one can expect 
some effects of the spin-lattice electron spin relaxation 
on the ESR spectra, and this causes considerable 
complications. Despite the limiting cases of very slow 
molecular tumbling (when the relative orientation of the 
static ZFS tensor and the laboratory frame is fixed) and 
of fast molecular tumbling (that 1<<R

S
ZFSτω , for instance 

for water solution of transition metal ions) one cannot 
describe the electron spin dynamics by a relaxation 
operator if the static ZFS is present. It brings us to the 
conclusion that, in fact, we are able to describe 
analytically the ESR spectra for few limiting cases: 
when the fluctuations of the orientation of the static ZFS 
tensor are very fast or when the static ZFS is very weak. 
It is somewhat difficult to accept so strong theoretical 
restrictions regarding so fundamental experimental 
results like ESR spectra. These restrictions do not 
concern the treatment presented in this paper. Examples 
of comparisons between ESR lineshape calculated by 
means of the perturbation treatment and the general 
approach are presented in (Kruk, 2007).  In Fig. 4 we 
present, for illustrative purposes another example of 
theoretical ESR lines obtained within the perturbation 
treatment (under conditions which justify its 
applicability) and by means of the general theory. 
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Fig. 4. ESR spectra calculated using the slow motion theory (blue 

line) and the perturbation theory (red line), DS=0.0cm-1,  
τR=100ps, DT=0.03cm-1,  τD=20ps 

 

CONCLUSIONS 

The theory of ESR lineshape outlined in this paper is 
valid for arbitrary interaction strengths and rates of 

isotropic reorientation.  Even though one cannot 
explicitly define the electron spin relaxation operator 
(and, in consequence, electron spin relaxation times), the 
spectral density function ( )ω1,1 −−s  describing the 
lineshape has a well defined meaning. The discussed 
treatment has a broad application range, especially for 
biological systems, like for example metaloproteins. 
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