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We have studied magnetic properties of zinc-oxide composite doped with transition metal (TM) ions (TM = Mn, Cr, Co) with 
relatively high concentration (4%) of TM ions. EPR measurements were carried out and temperature dependence of the EPR 
spectra was obtained.  Analysis of the temperature dependences of the integral intensity of EPR spectra was carried out using Curie-
Weiss law for ZnO;Mn sample. 

 
 

INTRODUCTION 
 

Diluted magnetic semiconductors (DMS) are of 
interest for study mainly due to the spin-spin exchange 
interaction between the localised magnetic moments and 
the band electrons (Dobrowolski, Kossut & Story, 
2003). This property of DMS has potential applications 
in the spin-dependent semiconductor electronics 
(Awshalom, Loss & Samarth, 2002).  

The ferromagnetism in DMS has been investigated 
theoretically using a model Hamiltonian (Dietl, Ohno, 
Matsukura, Cibert & Ferrand, 2000; Dietl, 2002; 
Jungwirth, König, Sinova, Kučera & MacDonald, 2002). 
Dietl et al. proposed the Zener p-d exchange interaction 
to describe the magnetism (Dietl et al., 2000; Dietl, 
2002). 

Zinc-oxide have attracted intense attention due to the 
search for high Curie temperature (TC) ferromagnetic 
DMS materials, since Dietl et al. predicted that GaN- 
and ZnO-based DMS could exhibit ferromagnetism 
above room temperature upon doping with transition 
elements, such as Mn (in the concentration of the order 
of 5% or more) in p-type materials (Dietl et al., 2000). 
According to these calculations, the p-type Zn1-xMnxO is 
a promising candidate for a room temperature 
ferromagnet.  Ab initio band calculations (Sato & 
Katayama-Yoshida, 2000) predict ferromagnetism to be 
stable in the p-type Zn1-xMnxO, whereas 
antiferromagnetism in the n-typeZn1-xMnxO. On the 
other hand, a ferromagnetic phase has been predicted for 
the n-type ZnO substituted with Fe, Co, or Ni (Sato et 
al., 2000). Various substitutions (B, Al, Ga, In, Si, and 
F) in the parent compound ZnO can increase its natural 

n-type conduction caused by oxygen vacancies and Zn 
interstitials (Minegishi, Koiwai, Kikuchi, Yano, Kasuga 
& Shimizu, 1997). The ferromagnetic state with TC 
above room temperature is predicted to be favourable 
for transition metals (TM), e.g. V, Cr, Fe, Co, and Ni in 
ZnO, while Mn-doped ZnO is predicted to be 
antiferromagnetic. These predictions largely boosted 
intensive experimental activities on TM doped ZnO. A 
large number of research groups have reported the 
experimental observation of ferromagnetism in TM 
doped ZnO fabricated by various methods including ion 
implantation (Johnson, Thurber, Anghel, Sabetian, 
Engelhard, Tenne, Hanna & Punnoose, 2010; Liu, Hsu, 
Venkataiah, Qi, Lin, Lee, Liang & Huang, 2010; Wang, 
Yuan, Song, Liu, Tian, Li, Zhou, Li & Yin, 2007; Heo, 
Ivill, Ip, Norton, Pearton, Kelly, Rairigh Hebard & 
Steiner, 2004; Hong, Brize & Sakai, 2005; Ip, Frazier, 
Heo, Norton, Abernathy, Pearton, Kelly, Rairigh, 
Hebard, Zavada & Wilson, 2003; Polyakov, Govorkov, 
Smirnov, Pashkova, Pearton, Ip, Frazier, Abernathy, 
Norton, Zavada & Wilson, 2004). For a comprehensive 
review, see Ref. (Zhou, Potzger, Xu, Talut, Lorenz, 
Skorupa, Helm, Fassbender, Grundmann & Schmidt, 
2008; Özgür, Alivov, Liu, Teke, Reshchikov, Doğan, 
Avrutin, Cho & Morkoç, 2005; Liu, Yun & Morkoç, 
2005; Jagadish & Pearton, 2006). However, the reported 
magnetic properties obtained using the same magnetic 
dopant vary considerably, e.g. for Mn doped ZnO the 
saturation moment varies from 0.075 to 0.17 μB/Mn 
(Hong et al., 2005), whereas TC from 400 K to 30-45 K 
(Jung, An, Yi, Jung, Lee & Cho, 2002). In contrast, 
other groups reported (i) the observation of 
antiferromagnetism (Bouloudenine, Viart, Colis, Kortus 
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& Dinia, 2005; Sati, Deparis, Morhain, Schafer & 
Stepanov, 2007), (ii) spin-glass behavior (Fukumura, 
Jin, Kawasaki, Shono, Hasegawa, Koshihara & 
Koinuma, 2001; Kolesnik, Dabrowski & Mais, 2002; 
Jin, Fukumura, Kawasaki, Ando, Saito, Sekiguchi, Yoo, 
Murakami, Matsumoto, Hasegawa & Koinuma, 2001), 
and (iii) paramagnetism (Rao & Deepak, 2005; Zhang, 
Chen, Lee, Xue., Sun, Chen, Chen & Chu, 2006; Zhou, 
Potzger, Reuther, Kuepper, Skorupa, Helm & 
Fassbender, 2007) in TM-doped ZnO.  

We report here on the magnetic properties of zinc-
oxide composite (ZnO) doped with Co, Cr and Mn. 
Electron paramagnetic resonance (EPR) spectra have 
been measured and analysed to extract information on 
the characteristics of the incorporation of the ions in the 
lattice.  

 
 

EXPERIMENT 
 
Hard solutions Zn1-xMnxO, Zn1-xCoxO, and Zn1-xCrxO 

were obtained by the method of solid state reactions, 
which is widely applied in ceramic technology. 
Materials of special cleanness were used as initial 
components for preparation of charge. The powders of 
connections MnCO3, CoCO3, and CrCO3 obtained by 
growing shallow to the size of particles 50–100 nm, and 
mixed up with powder ZnO and small ammount of water 
in the jasper drums of planetary mill SAND-1-1. Time 
of mixing and grating was determined by the degree of 
homogenization and was set to 16 h.  

The mixture was drained for temperatures 120±5 oC. 
The previous annealing of mixture, which its activating 
was in the process of, was carried out in air at 700±5 oC 

for 4 hours. Press-purveyances by a diameter 11.5–15 
mm thick formed 1–2.5 mm by applying pressure of 40–
60 MPa on a hydraulic press PG-10 without the use of 
plastificators. Mixtures were annealed at temperatures 
near to 1000 oC. Hard solutions of Zn1-xMnxO, Zn1-

xCoxO, and Zn1-xCrxO with x=0.04 were obtained in this 
way. Standards were annealed in the chamber stove of 
periodic action VTP-06M1 in air (the accuracy of 
temperature control was ±5 oC) during 3 h. Maximal 
temperature of annealing, which reply the isothermal 
area of curve of heating–cooling, was 1110 oC.  

Technology of preparation of ceramic materials on the 
basis of ZnO, as remarked earlier, utilizes solid states 
reactions. The reactions MnCO3 + ZnO > Zn1-xMnxO, 
CoCO3 + ZnO > Zn1-xCoxO and CrCO3 + ZnO > Zn1-

xCrxO yield powders of Zn1-xMnxO, Zn1-xCoxO, and Zn1-

xCrxO. 
EPR measurements were performed in the X-band. 

The temperature of the samples was controlled in the 
range of 92–370 K using the BRUKER liquid N gas 
flow cryostat. 

 
 

RESULTS AND DISCUSSION 
 
TEM images and EPR spectra of the investigated 

samples ZnO:TM are presented in Figs 1-3. TEM 
images (Figs 1a-3a) are included to show the 
morphology of samples at different magnification and 
present the material’s structure. Figures 1b and 2b 
present room temperature EPR spectra of ZnO:Co and 
ZnO:Cr, respectively. Figure 3b presents temperature 
dependence of EPR spectra for the sample ZnO:Mn.  
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Fig.1. Characteristics of the sample ZnO:Co: a) TEM image, b) EPR spectra at room temperature. 
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Fig. 2. Characteristics of the sample ZnO:Cr: a)  TEM image, b) EPR spectra at room temperature. 
 

 
 

Fig.3. Characteristics of the sample ZnO:Mn: a)  TEM image, b) EPR spectra at room temperature: experimental curve – black line, 
theoretical curve – red line. 
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Fig. 4. EPR spectra of the sample ZnO:Mn in the temperature range 92-370 K. 
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Additonal analysis was carried out only for the sample 

ZnO Mn.  The effective spectroscopic g-factor and the 
peak-to-peak linewidth of the resonance line Hpp were 
determined as illustrated in Figure 3b. Since the broad 
EPR line is asymmetric, the accuracy of parameters 
measured directly from the experimental spectrum is 
rather limited. Therefore, additionally the experimental 
line was fitted using the Lorenzian type curve, since 
such curves describe satisfactorily experimental EPR 
lines of DMS with manganium in high temperature 
range (see, Samarth & Furdyna, 1988, and references 
therein).  

In this way we determined parameters for EPR lines 
such as the peak-to-peak line width (Hpp), the intensity 
(I) as well as the resonance field (Hr). Based on these 
data we obtained the temperature dependencies of 
Hpp(T), I(T), Hr(T), and integral intensity as presented in 
Figure 5. 

We used the Curie-Weiss law to analyse the 
temperature dependences of the integral intensity, which 
is directly proportional to the magnetic susceptibility χ.  
A linear increase of χ-1(T) at higher temperatures can be 
fitted to the Curie-Weiss law  

 
(χ – χ0)-1(T) = (T-θcw)/C                               (1)  
 

where C is the Curie constant, θcw is the paramagnetic 
Curie temperature, and χ0 is a temperature independent 
term to account for the diamagnetic host and any Pauli 
paramagnetism contribution. 

Figure 5d displays the temperature dependence of the 
quantity (χ –χ0)-1. The lines are linear extrapolations 
illustrating the ferromagnetic (positive) Curie-Weiss 
temperatures.
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Fig.5. Temperature dependence of EPR spectra of the sample ZnO:Mn: a) Hr(T), b) I(T), c)Hpp(T), and d) inverse of integral intensity.  
 

Fitting yields the following values: θ(x)=97 K and 
C(x)=1.1311. 

The analysis of the dependencies in Figures 3-5 and 
the positive value of Curie temperature, 97 K, clearly 
indicate ferromagnetic interactions between Mn ions. 
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CONCLUSIONS 

 
The materials prepared for this study exhibit different 

structure. The samples ZnO:Co and ZnO:Cr have porous 
structure of different grainity, whereas the sample 
ZnO:Mn is more homogenous as compared with the 
previous two samples.  

In summary, we have reported the X-band EPR 
studies of ZnO:TM, TM=Co, Cr, Mn. We have 
determined from the EPR lines the for parameters: the 
peak-to-peak line width (Hpp), the intensity (I) as well as 
the resonance field (Hr).  

The results of temperature dependence of EPR spectra 
for the sample ZnO:Mn and linear extrapolations to the 
Curie-Weiss law indicate the ferromagnetic interaction  
between Mn ions characterized by the Curie temperature 
97 K.    
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