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It is the goal of this paper to present general strategy for using fractional operators to model the magnetic relaxation in complex 

environments revealing time and spacial disorder. Such systems have anomalous temporal and spacial response (non-local 

interactions and long memory) compared to systems without disorder. The systems having no memory can be modeled by linear 

differential equations with constant coefficients (exponential relaxation); the differential equations governing the systems with 

memory are known as Fractional Order Differential Equations (FODE). 

The relaxation of the spin system is best described phenomenologically by so-called Bloch’s equations, which detail the rate of 

change of the magnetization M of the spin system. The Ordinary Order Bloch’s Equations (OOBE) are a set of macroscopic 

differential equations of the first order describing the magnetization behavior under influence of static, varying magnetic fields and 

relaxation. It is assumed that spins relax along the z axis and in the x-y plane at different rates, designated as R1 and R2 

(R1=1/T1,R2=1/T2) respectively, but following first order kinetics. 

To consider heterogeneity, complex structure, and memory effects in the relaxation process the Ordinary Order Bloch’s Equations 

were generalized to Fractional Order Bloch’s Equations (FOBE) through extension of the time derivative to fractional (non-integer) 

order. 

To investigate systematically the influence of “fractionality“ (power order of derivative) on the dynamics of the spin system a general 

approach was proposed. The OOBE and FOBE were successively solved using analytical (Laplace transform), semi-analytical (ADM 

- Adomian Decomposition Method) and numerical methods (Grűnwald- Letnikov method for FOBE). Solutions of both OOBE and 

FOBE systems of equations were obtained for various sets of experimental parameters used in spin ½ NMR and EPR spectroscopies. 

The physical meaning of the fractional relaxation in magnetic resonance is shortly discussed. 
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INTRODUCTION 

 

A growing interest in investigations of structures and 

dynamics of complex systems has been observed during 

two past decades. The term complex systems covers 

such different systems as glasses, amorphous systems, 

colloids, microemulsions, polymers and biopolymers, 

organisms and societies etc. The three common features 

are characteristic for such systems: (a) a large diversity 

of elementary units, (b) strong interactions between the 

units, or (c) anomalous evolution in the course of time. 

Complex systems are disordered on a microscopic scale 

and homogeneous on macroscopic scale but often they 

possess the certain degree of order on intermediate, so 

called mesoscopic scale. It is due to specific balance 

between interactions and thermal motions. Such systems 

have anomalous temporal and spacial response (non-

local interactions and long memory effects) compared to 

systems without disorder. It is known since XIX century 

that the simple exponential relaxation law cannot 

adequately describe the relaxation processes and kinetics 

in such systems; relaxation has often non-exponential 

(power law) character (Feldman, Puzenko & Ryabov, 2006; 

Metzler, Klafter, 2000). 
   Nowadays, complex systems, are studied on all 

structural levels from microscopic to macroscopic using 

different experimental techniques, which are able to 

examine these systems at different levels of resolution, 

both, in a space and time. The area of investigation 

covers practically all fields of physics, engineering, 

chemistry, biophysics (West, 2006), and econophysics to 

mention some of them. Various aspect of physics of the 

complex phenomena are investigated based on fractional 

calculus approach. Fractional calculus being a kind of 

calculus, is a generalization of ordinary calculus in 

which the derivatives and integrals of arbitrary order are 

considered. There are systematically published special 

monographs discussing various applications of 

fractional calculus in solving physical problems 

(Herrmann, 2011; Uchaikin, 2013). 

   Experimental methods used to study complex systems 

should be sensitive to intermolecular interactions and 
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cooperative interactions. The magnetic resonance 

techniques, both NMR and EPR (and combinatory 

techniques) satisfy these requirements, but up to now the 

potential of these methods was not exploited in 

systematic investigations of complex systems with 

memory and non-local interaction. Probably due to lack 

of unified theoretical description of magnetic resonance 

phenomena in such systems, although e.g. some 

experimental investigations of relaxation in fractal–like 

structures were undertaken in frames of ESR 

spectroscopy, as early as in 80-ties of XX century 

(Alexander, Entin - Wohlman & Orbach, 1985; 

Alexander, Entin - Wohlman &Orbach, 1986). 

   This situation had changed in last few years, when first 

papers describing applications of fractional calculus for 

solving fractional Bloch equations appeared in the 

scientific literature (Magin, Feng & Baleanu, 2009). 

Fractional calculus seems to be exactly the natural 

mathematical language which describes the systems 

with memory and non-locality in an uniform way. The 

fractional calculus being a very old and simultaneously 

very young area of mathematical and scientific 

applications, probably would stay the calculus of XXI 

century, in many opinions, with systematically growing 

fields of applications (e.g. Sabatier, Agrawal, Tenreiro 

& Machado, 2007). 

   It is the goal of this paper to present some aspects of a 

general strategy in solving Fractional Order Bloch’s 

Equations (FOBE). In this presentation FOBE represent 

the description of magnetic relaxation in complex 

environments revealing time and spacial disorder on the 

phenomenological level. The presented approach 

concerns both analytical and simulation results.  

 

 

FRACTIONAL CALCULUS  

 

The concept of fractional calculus - that is - calculus of 

integrals and derivatives of arbitrary order has very old 

history in mathematics, can be traced back to 1695 

(Oldham & Spanier, 1974). It was developed 

simultaneously with the theory of classical calculus. But 

unlike classical derivatives and integrals, which have 

unique definitions and proper geometrical and physical 

interpretations for a long time, there are many 

definitions of fractional integrals and derivatives, while 

a single interpretation of fractional operators is lacking. 

A dozen or so definitions of fractional operators are 

known and used in the literature at present, three of 

which will be presented in this work. Because of the 

challenges on the theoretical level, practical applications 

of fractional calculus is a relatively new topic of 

research. The ideas of fractional calculus found many 

important applications in science, engineering and 

finance in the last three decades alone. Now the 

fractional calculus, involving fractional differential 

equations theory, is a rapidly growing area of pure and 

applied sciences. Some necessary terms and 

fundamental definitions concerning fractional calculus 

will be given further, omitting rigorous mathematics. 

 

Fractional Calculus-Basic Definitions 

Fractional calculus is a generalization of conventional 

calculus to non-integer order integral or derivative, and 

the mathematicians have found many ways to define the 

intuitive concept of the non-integer order derivative and 

integral (Oldham et al, 1974; Miller & Ross, 1993). 

Many of definitions used in fractional calculus are 

variations of so called Riemann-Liouville (RL) 

definition and this definition will be given as first below. 

The R-L approach is based on the generalization of 

classical Cauchy formula for repeated integration - the 

calculation of the n-fold integral is reduced to 

convolution integral. If we introduce the succinct 

notation the Cauchy formula can be written as follows: 
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where operator I
n
=D

(-n)
 denotes the integration of 

function f(t) to an order n. The initial value a is usually 

set to be 0. 

Using the known properties of Euler’s Gamma 

function Г(z):  
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where the integral converges for Re(z)>0, the Cauchy’s 

formula may be extend to any positive real values and 

defines the fractional integral of Riemann-Liouville type 

order >0: 
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The fractional RL derivative of order  denoted here as 
RL

D
 

can be defined using the previously defined RL 

integral. If we introduce a positive integer n chosen in 

such a way that n-1<<n then 
RL

D

 is defined as: 
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and additionally an operational equation is coming true: 
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The next type of fractional derivative is so called Caputo 

fractional derivative 
C
D


 defined as follows: 
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where f
(n) 

denotes the n-th derivative of function f and as 

previously n-1<<n. In Caputo’s derivative, the order of 

integration and differentiation is changed comparing to 

R-L derivative. Caputo derivative is “fractional 

integration of a derivative of the function” but R-L 

derivative is “ the derivative of fractional integral”. 

The Caputo derivatives are often used in applications 

because they have properties similar that we are familiar 

in conventional calculus. 

   It is seen from eqs.(4,5) that the fractional derivatives 

have non-local character, in opposition to usual 

derivatives which are local operators. They involve the 

integration as a vital part of differentiation operation; 

that means that the calculation of a derivative demands 

the knowledge about values of the function in the whole 

interval. Therefore, to underline this property, fractional 

derivatives and integrals are often described by the 

general term differintegrals. 

   The definition of Grűnwald-Letnikov 
GL

D
 

fractional 

derivative approaches from derivative side. In this 

approach fractional derivative of order  is the 

straightforward generalization of the definition for usual 

derivative of integer order. The final formula for 
GL

D

 

has the form: 
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where t and a are the lower and upper limits of 

differentiation, respectively; and [ ] denotes the integer 

part (floor function), which maps the real number to 

smallest following integer. 

   Rewriting (6) for (-) we obtain the Grűnwald-

Letnikov (GL) integral: 
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The GL approach is mostly used in construction of 

numerical algorithms for Fractional Differential 

Equations (FDE). For many practical purposes, for a 

great variety of functions the RL, C, and GL definitions 

are equivalent. The general introduction to fractional 

calculus can be found in cited monographs e.g.(Oldham 

et al., 1974, Miller at al., 1993; Uchaikin, 2013). 

 

Fractional Differential Equations 

   Fractional Differential Equations (FDE) are the class 

of differential equations in which the usual derivatives 

of integer order (ordinary or partial) were replaced by 

fractional derivatives. Currently such equations have a 

very rich theory, the results and applications of FDE are 

discussed in many books (Podlubny, 1999; Kilbas, 

Srivastava & Trujillo, 2006; Petráš, 2011). 

Only Initial Value Problems (IVP) - Cauchy type 

problems on a finite interval for Fractional Ordinary 

Differential Equations (FODE) of real order will be 

considered here because the FOBE belong to this 

category of equations. 

   The problem of initial conditions is rather subtle in 

physical applications of FODE because the applications 

of FODE require well defined initial conditions having 

physical interpretation. 

   As mentioned above there exist many kinds of 

fractional derivatives. It is worthy to note at this place 

that the RL derivative of the constant function is not 0 

(Podlubny, 1999). This fact results in difficulties in the 

physical interpretation of initial conditions for RL 

derivatives. Initial conditions must include the limit 

values of the RL derivatives at the lower terminal t=a; 

however, the physical interpretation of such type of 

conditions is not known (Podlubny, 1999). 

   This problem does not appear when we use Caputo’s 

derivative. For FDE with Caputo derivative, the initial 

conditions take on the same form as for Integer-Order 

Differential Equations (IODE) (Diethelm, 2010). This fact 

also facilitates the use of operator calculus to solve FDE 

analytically. Best fitted to this purpose are Laplace and 

Fourier transforms, but other integral transforms are also 

effective (Podlubny, 1999; Monje, Chen.,Vinagre, Xue 

& Feliu, 2010; Kaczorek, 2011). The general problem of 

initial conditions (and boundary conditions) for FDE, 

known as a problem of initialization for FDE, was 

systematically studied from different points of views, 

some aspects are discussed in cited literature (Podlubny, 

1999; Petráš, 2011; Butzer & Westphal, 2000; Hilfer, 

2000). 

   Analytical solutions of FODE are difficult to receive 

generally (Kilbas at al., 2006), in most cases the 

numerical methods must be used. Many numerical 

techniques for solving FDE were elaborated in recent 

times. Most frequently they are modifications of 

generally known discretization scheme previously 

developed for solving IODE, but some additional 

problems not known in IODE appear in solving FDE 

due to non-local character of fractional derivatives 
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(Weilbeer, 2005; Diethelm, 2010). Generally, the 

approximation of fractional derivatives is non-trivial 

problem. The special numerical techniques were worked 

out to perform the approximation of fractional 

derivatives with desired accuracy, including so-called 

frequency domain approach, originally developed to 

solve fractional control theory problems and very useful 

in a number of practical applications (Oustaloup, 

Mathieu & Lanusse, 1995; Duarte, 2005). 

 

 

BLOCH’S EQUATIONS 

 

The Bloch’s equations give a simple qualitatively and 

quantitatively description of both cw and pulsed 

magnetic resonance experiments on S = ½ systems. The 

set of Bloch’s equations (in a laboratory frame) 

describing the motion of magnetization M = 

(Mx,My,Mz)
T
 in static B0 magnetic field (Zeeman field) 

and radiofrequency (or microwave in the case of ESR) 

fields is given below (eqs. 8a,b,c). M0 is the equilibrium 

z magnetization. 

   Due to interaction with static magnetic field B0=B0z 

the magnetization vector precesses around B0 field 

direction with Larmor frequency ω0=γB0, γ is the 

gyromagnetic ratio and for proton γ=42.52 MHz/Tesla 

(for simplicity the NMR convention concerning H 

nuclei will be used throughout the text). After sample is 

placing in a magnetic field, the magnetization goes to 

thermal equilibrium with no transverse components. To 

detect the magnetic resonance signal the magnetization 

is perturbed away from thermal equilibrium by 

additional oscillating magnetic field B1=B1cos(ω1t) 

perpendicular to B0, creating oscillating field in the 

sample; ω1 is a frequency of radio(microwave) 

oscillating field. The general magnetic field has the form 

B=B0+B1(t).The B1(t) field can be decomposed into two 

counter- rotating fields: B1,2(t) = B1cos(ω1t)x  

B1sin(ω1t)y, one or the other of these fields will always 

be rotating in the same sense as the precession of spins 

and affects the spins. Relaxation processes are included 

in a purely phenomenological manner in this model, by 

introducing a longitudinal (spin-lattice) relaxation time 

T1 and a transverse (spin-spin) relaxation time T2, 
assuming exponential character of relaxation in both 

cases. The result are Bloch’s equations (Haacke, Brown, 

Thompson & Venkatesan, 1999; Slichter, 1989): 
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For components of magnetization, we have: 
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The solving of Bloch’s equations given in their 

general form is rather difficult (the coefficients contain 

the oscillating terms). Known solutions have very 

complicated algebraic form, unsuitable for practical 

applications, as evidenced in (Torrey,1949; Yariv, 1975; 

Madhu, Kumar, 1995). In this work, the simplified form 

of Bloch’s equations will be considered and solved, but 

the proposed method has a general character and may be 

generalized to solve analytically and numerically the 

Bloch’s (and similar) equations for various sets of initial 

conditions. 

 

 

METHODS AND RESULTS 

STATE REPRESENTATION APPROACH 

 

State (state vector) representation is a routine approach 

used in optimal control theory (Lewis & Syrmos, 1995; 

Kaczorek, 2011) and it may be generalized to solve 

fractional problems. Generally we search solution of the 

control problem (monovariable system of commensurate 

order in considered case) given in following form: 
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where x(t)  Rn
, u(t)  Rm

, y(t)  Rp
, matrices A Rnxn

, 

B Rnxm
, C Rpxn

, D Rpxm
. Dt


 can be an integer order 

derivative (when =1) or RL, or Caputo operator. 

Vectors x(t) u(t), y(t) are called state vectors, input and 

output respectively. Matrix A—is state transition matrix 

(Monje at al., 2010; Kaczorek, 2011). The general 

solution of system can be written as:  
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For =1, 0(t) = (t): 
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where exp(A) is a exponential of matrix defined as: 
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For  1 we get: 
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and 
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where E(At

) is a matrix Mittag-Leffler function. 

Mittag-Leffler (M-L) functions, which are genera-

lizations of exponentials, play a fundamental role in 

fractional calculus because they are eigenfunctions of 

fractional operators (Podlubny, 1999). Mittag-Leffler 

functions of complex variable z can be written in 

following form (series representation): one parameter 

M-L function E(z): 
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and so called two parameter M-L function E, (z): 
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where ,   C and Re>0, Re>0. For ==1 we 

obtain: 
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(Haubold, Mathai & Saxena, 2011). 

The Laplace transforms of M-L functions are known, 

this fact facilitates solving some kinds of FDE on direct 

way using inverse Laplace transform (Podlubny, 1999). 

To use state vector approach effectively (to omit 

integration in eq.10) the Bloch’s equations (8a,b,c) have 

been converted to matrix form, and written in much 

comfortable homogeneous form (18): 
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or in matrix compact form (19): 

 

 
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If the matrix A is constant in time interval, adding the 

initial conditions M(t=0)=M(0) (magnetization at t=0 

time), we can obtain the solution of system (19) in an 

analytical form, in terms of the matrix exponential and 

initial states:  
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Ordinary Order Bloch’s Equations 

   Just one particular case of the general system of 

Bloch’s Equations (BE) (19) for both ordinary order 

(OOBE) and fractional order (FOBE) will be discussed 

in this paper. 

Considered is the situation when no disturbance of B1 

RF field occurs. It is a pure relaxation case, when 

position of the magnetization vector at the end of the 

resonance is the initial position of the magnetization 

vector after π/2 pulse (Haacke et al., 1999). In this case 

the Bloch equation may be solved analytically for initial 

conditions Mx(0)=100, My(0)=0, Mz(0)=0. The matrix 

A assumes the form: 
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The solution of homogeneous linear system (19) reduces 

to the task of computing exponential matrix. To 

calculate the matrix exponential exp(A) the following 

classical method known from linear algebra (Lang, 2000) 

was used: after finding eigenvalues i and corresponding 

eigenvectors a transformation to Jordan form was 

carried out. Because the exponential matrix for diagonal 
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matrix is obtained by exponentiating each diagonal 

element we get the known solution for M(t): 

 

   1
0

t
M t e M


 

J
Q Q

   

   

1 1

cos sin 0 02 20 0

1 1

sin cos 0 02 20 0

1 1

0
0 0 11 1

0 0 0 0

t t
T Te t e t

M x

t t M y
T Te t e t

M z

t t M
T Te e

 

 

 

 


 


 
 
   
   
   
   
   
   

  
  
 

              (22) 

 

where Q,,Q-1
 are transformation matrices, J is a diagonal 

matrix.  

   All symbolic calculations were performed using the 

Matlab Symbolic Toolbox and MuPad computer algebra 

system (Symbolic Math Toolbox™5, MuPAD® Tutorial, 

1997-2008). 

 

Fractional Order Bloch’s Equations 

   The Bloch’s equations (19) (OOBE) may now be 

converted formally to fractional form. The derivatives 

d/dt in (19) are changed to fractional time derivative 

operators d

/dt


 in Caputo form 

C
Dt


, where 0<<1 is an 

arbitrary parameter representing the order of the 

fractional time derivative operator: 

 

 1
0

2

'
'

C
D

a t

Mx
M t M

x y T


  ,         (23a) 

 

 2
0

2

'
'

D
t

M yC
M t M

a y x T


   ,         (23b) 

 

 
 3

1

0
'

C
D

a t

M M tz
M t

x T

 
  ,         (23c) 

 

and where ω’0 and T’1,2 are modified frequency and 

relaxation times, respectively. If we assume for 

simplicity, the values of i are equal i=, then ω’0 and 

T’1,2 have the following form: 

 

'

1

1 1
0 1 2

1 '0
1 22 2

1 1'
, ,

T T TT

 



  



  

 

    ,          (24) 

 

The ω’0 and T’1,2 are dependent on “fractionality” 

degree  and non-local fractional time . 

   This form of FOBE (eqs. 23) was introduced in 

(Magin at al., 2009). It is worthy to mention that 

transformation from OOBE to FOBE is made on the 

pure heuristic (formal mathematical) base. Because the 

dimension of fractional derivative [d

/dt


] = s

-
,
 
that 

means, d

/dt

 
 is not a pure time derivative operator in 

usual sense. In order to be consistent with time 

dimensionality (and magnetization dimension) a 

parameter  is introduced in the following way: 

 

11

1

d
s

dt



 







 
 
  

,             (25) 

 

and  has dimension of seconds []=s. Ordinary time 

derivative operator may therefore be changed to its 

fractional equivalent d

/dt

 
having dimension s

-1 
and 

representing true time derivative operator. It was made 

by introducing a phenomenological parameter 1- 

(dimension s
1-

) representing non-local fractional time 

components of time transformation. Finally the 

transformation is given by the formula (Podlubny, 

2002): 

 

1

1d d

dt dt




  .             (26) 

 

If all i have the same order , (commensurate order 

system), the previously introduced method of solving 

OOBE could be easily adapted to solve eqs. (23). After 

transformation of the system of equations (23a,b,c) to 

respective homogeneous form, the system matrix has the 

same form as in eq.(21). Only the values of parameters 

ω0 and T1,2 are changed: ω0 ->ω
’
0 and T1,2-> T’1,2, 

respectively. Matrix A is diagonalizable, as was shown 

previously, and if we denote eigenvalues of A as i, we 

get: 

 

0 0 01 2 4

2 2 2 1

1 1 1 1' ' '
3' ' ' '

, , ,i i i
T T T T

           

       
          
                

       

    . 

              (27) 

 

The Mittag-Leffler matrix function E(At

) can be easy 

evaluated using following affinity transformation: 

 

 
 

 

 
 

1 1

1 10 0

1

k k
kt t

E t
k kk k

ML

  
 

   

 
 
   

    


 

QJ Q QJ Q
A QJ Q

              (28) 

 

where J is a Jordan form of A, J
ML

 is a diagonal 

matrix that contains the elements E(it

) on its 

diagonal. The final form of matrix Mittag-Leffler 

function takes on the form: 
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 

 

 

2 2 3

2 3 1

' '
1 1

1
0 0

2

1
0 0

2

1 1
0 0 1

0 0 0 0

i

i
E t

E t E t
T T

 
 

  

  




 
 
 
 

  
 
         

       
  
 

A , 

              (29) 

 

where 

 

  ' '
2 3 0 01 2 2' '

2 2

1 1 1
, ,

2
E i t E i t

T T

 

 
      

                  
      
      

    

            (29a) 

 

The general solution of the system (23a,b,c) can be now 

written as the linear combinations of Mittag-Leffler 

functions: 

 

   
1 1 1' '

00 0' '2
2 2

M t E i t E i t M
x x

T T

 
  

 
    

       
       

       
       

 
1 1 1' '

00 0' '2
2 2

i E i t E i t M
y

T T

 
  

 
   

       
       

       
       

,  

                                                                               (30a) 

                                                                                                                                                                                                 

   
1 1 1' '

00 0' '2
2 2

M t E i t E i t M
y x

T T

i  
  

 
 

       
         

       
       

 
1 1 1' '

00 0' '2
2 2

E i t E i t M
y

T T

 
  

 


       
         

       
       

, 

            (30b) 

                                                                                                    

   
1

0
0'

1

1
1

'
1

M t E t M M
z z

T

E t
T










         
    
    

. 

            (30c) 

 

When we put =1 into eqs. (30), and use eq.(17) we get 

the solution of ordinary order Bloch’s equations in 

known form: 

 

          
1

2

0 00 cos 0 sin
T

M t e M M
x

t tx y 


  ,        (31a)  

          
1

2

0 00 cos 0 sin
T

M t e M M
y

t ty x 


  ,       (31b)                                                                                          

     
1 1

1 1
0

0
1

T T
M t M e M

z z
e

 

   ,                      (31c)  

                                                                                                   

which corresponds with the solution given by eq. (22). 

 

ADOMIAN DECOMPOSITION METHOD (ADM) 

 

Confirmation of the previously obtained solution can be 

made using Adomian Decomposition Method (ADM). 

This analytical (semi-analytical) method introduced by 

Adomian in eighties of XX century is generally used to 

solve ordinary and partial differential equations, both 

linear and nonlinear (Adomian,1994), also to solve FDE 

(Duan, Rachb, Baleanu & Wazwaz, 2012). In ADM the 

general nonlinear equation is written in decomposed 

form: 

 

     Lu t Ru t Nu t g   ,           (32) 

 

where L^ is invertible linear operator (usually highest 

order derivative in equation), R^ is remaining linear 

part, N^ represents a nonlinear operator and g a well-

behaved function. The solution is splitted on the linear 

part and non-linear part. The general solution is searched 

in a form of an infinite series which converges to 

accurate solutions. The nonlinear contribution is 

obtained in a form of so-called “Adomian polynomials” 

from its expansion into the power series. When applying 

inverse operator L
-1

 to eq.(32) we get: 

 

       1 1
u t L Ru t L Nu tf t     ,          (33) 

 

where  

 

       1 1
u t L Ru t L Nu tf t     .          (34) 

 

The general solution u(t) is expressed in series form: 

 

0

k

k

u u




 ,             (35) 

 

and the action of nonlinear part N^ is given as a series of 

Adomian polynomials An, which are functions of 

consecutive approximations u1,u2,….,un: 

 

0

n

n

Nu A




 .             (36) 

 

Adomian polynomials can be calculated from relation: 

 

0 0

1

!
n

n
k k

n
k

A
d

N u
n d








 

 
  

 
 .           (37) 

 

Finally, we obtain solution u(t) of eq.(32) as in a form of 

recurrent relation, successive terms of Adomian series 

have form: 
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  1 1

0 1,
nk kL Ru L Au f t u  

     .          (38) 

 

   ADM technique provides an analytical solution 

without discretization or linearization, and its true power 

is seen in solving various nonlinear problems. The 

Adomian method has many modifications oriented to 

specific applications, some of them are widely used to 

solve the FDE, both ordinary and partial (Duan et al., 

2012; Junsheng, Jianye & Mingyu, 2007). Modified 

ADM is easy to formulate in the context of our problem. 

Let consider system (23), here written in matrix form as: 

 

,            (39) 

  

with previously introduced initial condition 

M(t=0)=M(0). System (39) is linear and homogeneous, 

therefore the non-homogeneity and nonlinear part in 

ADM approach cannot be taken under consideration. 

Integrating eq.(39) according the definition of Caputo 

derivative 
C
D

 
 (5) we get: 

 

 
 

 

 

 
 

1 12
2 1

2 1 110 0

t tC
I D M t d M d

a t

    
  

 

 
 

  
  

.  

              (40)  

       

Integrals in eq.(40) could be evaluated after changing 

their order and using known integral relation (Whittaker 

& Watson, 1965): 

 

   
   
 

 
11 1

1 1 1

a ba b
t a b

t d t
a b

    


  


 
  

 
.          (41) 

 

After rearrangement the final result yields: 

 

     0
C

I D M t M t M
a t

 
  .           (42) 

 

In spirit of ADM method we decompose M(t) into the 

infinite series: 

 

   
0

A k
k

M t M



 ,            (43) 

 

where MA(k))is a k-th element of series (35).The first 

element of the expansion (43) denoted here as MA(0) is 

given by initial condition:  

 

 
   

0
0

A
M t M  .           (44) 

 

As we see the partial solution is given by iteration 

procedure:   

 
 

 
 

1
, 1.  

A k A k
M t I M t k




 A            (45)  

 

In the next step we obtain k-th part of Adomian series 

as:  

 

 
 

 
 

0

k

A k A
M t I M t


 A  .           (46) 

 

Summation the series gives the magnetization in terms 

of Mittag-Lefller function: 

 

 
 

     
0

0 0
1

k k

k

t
M t M E t M

k









 

 

A
A .          (47)  

 

The result (47) corresponds with previously achieved 

solution, when state vector method was used (eqs. 30). 

The ADM is a general and powerful method and could 

also serve to verify results obtained for Bloch’s 

equations in a non-homogeneous form, as they are 

usually presented. The ADM method has an additional 

advantage, using ADM method, it is easy to perform the 

calculation with the Riemann-Liouville derivatives. 

When we use the RL derivatives 
RL

D

 instead of 

Caputo’s in eq.(39), we must change the initial 

conditions, the new initial condition has following form:  

 

    1

0
0RL

a t t
I D M t M 


 .           (48) 

 

Using integral operator I

 to both sides of eq.(39), 

definition of 
RL

D
 

derivative (4) and initial condition 

(47) we get: 

   
 

   
1

0
RL

a t

t
I D M t M t M I M t


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



  


A     (49)  

 

and the solution takes the form:  

 

 
 

   
1

0
t

M t M I M t








 


A .          ( 50) 

  

Using Adomian method with zero approximation: 

 

 
 

 
 

1

0
0

A

t
M t M










,            (51) 

 

we obtain as previously the series: 

 

 
 
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 
1 1

0 0
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k
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t t
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 
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 
A A , 

              (52) 

 

which factorizes to final solution: 
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         1

, ,10 0M t t E t M E t M
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  


  A A

   0E t M
 A .                                                   (53) 

 

The result agrees with these given by eq.(47) and 

eq.(30). 

 

 

ASYMPTOTIC SOLUTION OF FRACTIONAL 

ORDER BLOCH’S EQUATIONS 

 

The general solutions of FOBE (30) are given in the 

form of complex valued functions. The complex valued 

M-L functions are generally difficult in examination 

(Haubold at al.,2001; Hilfer & Seybold, 2006). In order 

to investigate the fractional character of relaxation 

described by eqs. (30) the asymptotic behavior of M-L 

functions was examined. For argz/2, with accuracy 

to z
-k

 the following asymptotic formula can be deduced 

from integral representation of M-L function (Gorenflo, 

Loutchko & Luchko, 2002): 

 

 
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 
11 1

exp
11

kp z p
E z z O z

kk



  

   
   
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. 

              (54) 

 

Let introduce notations: 

 

'

0'
2

1 i
i re

T


 


   ,            (55) 

 

where r= and =arg(): 

 

   ' '

0 2

2
2 1'

0'
2

1
, tan Tr

T
 


  

 
 
 

  .           (56) 

 

Considering only the first term in eq.(54), that is the 

situation corresponding to long time approximation 

(ωo
’
T2

’
>1, in

 
NMR), we obtain asymptotic solutions of 

equations (30a,b,c) for magnetization components in the 

form of complex valued functions of time. After some 

transformations they can be converted to factorized 

exponential form easier to analyze and plot: 
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                                                                               (57a) 
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                                                                               (57b) 

 

In a case of Mz(t) component the asymptotic expansion 

valid for small z, is a “stretched exponential”: 
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.            (58)                                                    

 

Using this expansion we get asymptotic expansion for 

Mz(t): 
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            (57c) 

 

For =1, the solution (57a,b) has the same form as in 

previously obtained eqs.(31), the result is easy to check 

using known formula: 

 

     11 1cos tan , sin tan
2 21 1

t
t t

t t

  
 

   ,                  (59) 

                                                                                    

and properties of the Gamma function. The calculated 

magnetization components (eqs.57) are given as the real 

functions of time and the results show, that in the long 

time approximation the system (30) demonstrates the 

fractional order dynamics: precession with attenuation 

and phase shift, fractional order relaxation. Both 

components of solution, exponential function (damping) 

and the oscillation part are modulated by functions 

depending on order of differentiation  representing the 

“fractionality” of the system. Influence of “fractionality” 

on time behavior of magnetization components is shown 

in Fig.1and Fig.2. 
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Fig.1. Influence of fractional order  on time behavior of Mx 

component of magnetization M. Mx=Mx(0) =100, T2’= 

20(ms), f0=160 Hz. For these the eqs. (57a,b) were used. 

 

 
 
Fig.2. Influence of fractional order  on time behavior of Mz 

component of magnetization M. Mz=Mz(0) =0, M0=100, T1’= 

1(s), , f0=160 Hz.  is in the range from =0.5 (bottom curve) 

to =1 (upper curve). For these the eq. (57c) was used. 

 

 

DIRECT INTEGRATION OF FRACTIONAL ORDER 

BLOCH’S EQUATIONS 

 

Numerical Evaluation of Mittag-Leffler Functions  

   A numerical solution of FOBE includes numerical 

evaluation the values of Mittag-Leffler functions and 

numerical approximations of fractional derivatives. 

   The time behavior of magnetization components 

during relaxation (30) is described by Mittag-Leffler 

functions. For M-L functions E(z) and E,(z) 

evaluation of their values of for complex arguments z  
C is a very complicated and unexplored problem (Hilfer 

at al., 2006). To calculate numerically the M-L 

functions values from their series representation a direct 

method of truncation can be used, in most cases with 

success, but when the series slowly converges or does 

not converges, some more sophisticated algorithms must 

be employ. Some algorithms were elaborated to solve 

this problem (Gorenflo at al, 2002; Diethelm, Ford, 

Freed & Luchko, 2005). One of most popular 

implementation of such algorithms, applied also in this 

work to check the validity of the asymptotic solution of 

FOBE (data not shown), is Matlab file mlf.m (Podlubny, 

Kacenak, 2005). 

 

Dynamical System Approach  

   Often, a simpler way to get the solution of differential 

equations is to choose the direct integration of the state 

equations. Special methods developed in theory of 

dynamical systems and optimal control theory, e.g. in 

construction of PID (Proportional-Integral-Derivative) 

regulators are very useful from the practical point of 

view. The fractional derivatives in this case are 

evaluated in the frequency domain (as filters) opposite 

to usual time domains. (Duarte & da Costa, 2013). 

Several groups have improved this method, most known 

implementations are Matlab Toolboxes CRONE 

(Oustaloup, Mathieu & Lanusse, 1995) and NINTEGER 

(Duarte, 2007).These Toolboxes have their own GUI 

(Graphical User Interface) and may be linked to Matlab 

and Simulink, a special graphical environment oriented 

at simulation of dynamical systems (Simulink, 1990-

2013). In Simulink, the differential equations and initial 

conditions are represented by special blocks and flow 

diagrams. Dynamical problems are solved by direct 

integration of the state equations using various kinds of 

numerical algorithms (Gran, 2007). The results are easy 

to plot, including phase diagrams. This approach is 

universally accepted in optimal control theory to 

simulate regulations systems, also of fractional nature 

(Monje at al., 2010, Mital, Kr, & Prasad 2011, Zhao, 

Zhao & Luo, 2011). First, to simulate Bloch’s equations 

this method was introduced in (Petráš, 2010; Petráš, 

2011), where the Simulink schemas realizing integration 

of OOBE and FOBE were presented. 

   The integrated equations have the form of eqs. 

(23,a,b,c) and if 1=2=3=1 we deal with OOBE case, 

when orders in derivatives are different the schema 

describes the general fractional system FOBE. 

   Integration of FOBE (eqs.23) is performed using 

standard algorithms which are connected to specific 

blocks integr_Mi(t), where i=x,y,z. Fractional 

derivatives are realized using block nid (Duarte, 2005). 

To solve the state equations for FOBE having the form 

of eqs. (60), the integration was performed using 

standard Runge-Kutta method of 4-th order 

implemented in Simulink. The integration procedure is 

realized within block Integer_Mi(t) (the other 

integration methods are also available in Matlab and 

could be used instead Runge- Kutta method, if 

necessary). Simulink schemes to perform integration of 

FOBE is presented in Fig.3. 

 

   
 11

0
'
0 '

0 2

C

t

t M txM t D M t dtyx
T





 

  
  
    

,        (60a) 



 Fractional Bloch’s equations … 19 

 

   
 

21

0
'
0 '

0 2

C

t

t M ty
M t D M t dtxy

T





  

  
  
    

, (60b) 

 

 
 31

0
0

'
0 1

C

t

t M M tzM t D dt
x

T

 
 

  
  
    

.  (60c) 

 
 

 
 

Fig.3.Simulink realization of FOBE integration (according to 

Petráš, 2010). 

 

The other option to obtain solution of FOBE 

numerically is the direct integration of Bloch’s equations 

using the definition of fractional derivatives in 

Grűnwald-Letnikov 
GL

D
 

form. The Matlab code 

FOBlochEqs based on the following integration schema 

(61) was also published (Petráš, 2011): 
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where h denotes an integration step, cj
(i)

 are combi-

natorial factors (Petráš, 2011). These codes were used to 

check the results obtained by the analytical methods and 

Simulink simulations.  

It is easy to see that this numerical scheme enables us 

to solve the FOBE for different values of i. Examples 

of simulations results showing the dependence of 

magnetization as a function of fractional derivative order 

are presented in Fig.4 and Fig.5. The figures present the 

phase plots 3D and 2D, for different values of 

differentiation order . That permits to imagine the 

connection between “fractionality” and relaxation. 

 

 

 
 

Fig.4. Numerical realization of FOBE integration (eqs.60) in 3D 
space (Mx(t) vs. My(t) vs. Mz(t) as  function of order of 

fractional derivative . Simulation time 1s. Mx=Mx(0) =100 , 

T2’= 20(ms), f0=160 Hz . 
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Fig.5. Numerical realization of FOBE integration (eqs.60) in 2D 

space My(t) vs. Mx(t) as  function of order of fractional 

derivative . Simulation time 1s. Mx=Mx(0) =100 , T2’= 

20(ms), f0=160 Hz. 

 

 

DISSCUSSION  
 

At the work an attempt to solve Fractional Order 

Bloch’s Equations in the systematic way is presented. 

The generalization of Ordinary Order Bloch’s Equations 

to fractional order equations was first made in (Magin et 

al.,2009 ) using Laplace transform method; solutions of 

FOBE were obtained in terms of Mittag-Leffler 

functions. 

In this work, a new approach is presented. The FOBE 

system was transformed into matrix form, to the 

homogeneous system of equations. This simplified 

application of the general methods of optimal systems 

theory and obtaining analytical solutions. The solutions 

were given in a compact form as a linear combination of 

M-L functions. The answers received have other formal 

form than those obtained at earlier recalled work (Magin 

et. al., 2009), but it is easy to convert one form of the 

solutions into the other. For =1, when the M-L 

functions convert oneself to ordinary exponents, both 

forms of the solutions are transformed to form typical 

for the solution of the OOBE (31a,b,c). 

As the next method for obtaining a solution of FOBE 

in the analytical form, an Adomian Decomposition 

Method in matrix form was suggested. This method also 

led to solution given in analytical form, agreeing with 

results received previously, with help of state function 

method. Obtaining of the analytical solutions of FOBE 

is made much easier, when we apply both of the 

methods to BE equations given in the homogeneous 

form, since we avoid an additional troublesome 

integration (we are not obliged to calculate convolution 

integrals). 

The obtained form of expression for magnetization 

components (57a,b,c) has also an additional benefit. It 

has the relatively simple form of the asymptotic 

expansion and expressions for magnetization 

components have the factorized form of exponentials 

and trigonometric functions. These expressions have a 

general character similar to the solutions of the 

corresponding OOBE (eq.22) and comparing the forms 

of both solutions it is easy to see the modulatory 

influence of the fractional derivative order  on the 

individual elements of function, which describe 

magnetization as a function of time. Both relaxation 

(exponential) part and oscillating part of FOBE solution 

include new internal exponential and oscillating element 

(scaling parts). That means that usual time constant is 

replaced by time function and process tends to move 

forward in time as coefficient  in exponent change 

from =1 to =0.8 (Fig.1,2,4,5). These observations are 

consistent with the interpretations of the fractional 

derivatives in chronological time as averages over the 

fluctuating operational time, and therefore phase space 

trajectories are not energy level curves but rather spirals 

into the origin, demonstrating dissipative character of 

internal processes (Stanislavsky, 2004). 

   In the work, the emphasis was put on the analytical 

methods. Numerical methods, developed by other 

authors give results easy to present graphically, but all 

numerical procedures take advantage of so-called “short 

memory principle” (Podlubny,1999). On the strength of 

the “short memory-principle”, time behavior of f(t) in a 

recent past only is taken into account. This fact 

necessarily changes the actual problem. The principle 

was introduced in order to analyze FDE using 

previously elaborated methods, but it consequently 

changes the solution, which may be physically incorrect. 

It is obvious, that we need an analytical method which 

would offer a control of the procedure of FDE solution 

and would guarantee the physically correct solution. It 

seems that ADM method fulfils these requirements, 

because it treats the response of the physical system on 

external stimuli in a systematic way. The decomposed 

parts of ADM are related physically to system reactions, 

and what is important in solving FDE, the ADM 

involves the initial conditions as the initial 

approximation. Just the simplest case of using ADM to 

solving of FOBE was demonstrated here. 
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   It is an advantage of the ADM, that it may be applied 

to both kinds of fractional derivatives, as it was shown 

(eqs. 47,53). Having many different approaches to the 

same problem enhances the chances to elucidate the 

fundamental unresolved problem of fractional calculus 

applications - unambiguous physical interpretations of 

the fractional derivatives (Podlubny, 2002; Stanislavsky, 

2004). It is known that the order of the fractional 

derivative 0< <1 classifies and quantifies the influence 

of previous history of process. For unity value of the 

fractional order (or integer order of one) the influence of 

history is minimal, in the sense that, then the evolution 

enters only through the present state. Small value of  

corresponds to a strong influence of history. These facts 

can be easy drawn from the analysis of kernel (t) in 

eq. (5): 
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where * denotes convolution. When 0 then (t)  

(t) (Dirac’s function) and system loses its memory, in 

opposite case when 1 then (t) H(t) (step 

Heaviside’s function), the system has full memory. 

 

 

CONCLUSIONS 

 

Bloch’s equations are an excellent model for testing the 

influence of history on dynamics. Nevertheless, further 

development of fractional  magnetic relaxation theory at 

molecular level would probably demand formulating the 

problem of magnetic relaxation in terms of fractional 

quantum mechanics. However, it seems that it is much 

more important to find suitable experimental systems in 

mesoscopic scale in which the effects of memory and 

disorder would be manifest. Magnetic spectroscopies, 

both NMR and EPR, with well elaborated theories and 

opportunities for measurement within many orders of 

magnitudes in a time scale are ideal candidates to give a 

vital contribution in the rapidly growing area of 

fractional physics. 

 

 
REFERENCES 

 

Adomian G.(1994). Solving Frontier Problems of Physics: The 

Decomposition Method. Kluwer Academic Publishers, 

Dordrecht/Boston/London. 

Alexander S., Entin - Wohlman O. & Orbach R. (1985). 

Relaxation and nonradiative decay in disordered systems. I. 

One-fracton emission. Phys. Rev. B., 32(10), 6447-6455. 

Alexander S., Entin - Wohlman O. & Orbach R. (1986). 

Relaxation and nonradiative decay in disordered systems. II. 

Two-fracton inelastic scattering. Phys. Rev. B., 33(6), 3935-

3946. 

Butzer P.L. & Westphal U. (2000). An Introduction to 

Fractional Calculus. [In:] Hilfer. R. (ed).,Applications of 

Fractional Calculus in Physics., World Scientific Publishing 

Co. Pte. Ltd., Singapore.,1-85. 

Diethelm K., Ford N.J., A.D. Freed A.D., Luchko Yu. (2005). 

Algorithms for the fractional calculus: A selection of 

numerical methods, Comput. Methods Appl. Mech. Engrg. 

194, 743–773. 

Diethelm K. (2010). The Analysis of Fractional Differential 

Equations. An Application-Oriented Exposition Using 

Differential Operators of Caputo Type. Springer, Heidelberg 

Dordrecht London New York. 

Duan J-S., Rachb R., Baleanu D., Wazwaz A-M. (2012). A 

review of the Adomian decomposition method and its 

applications to fractional differential equations., 

Communications in Fractional Calculus,3(2), 73-99. 

Duarte V. (2005) http://web.ist.utl.pt/~duarte.valerio/ 
ninteger/ninteger.htm. 

Duarte V. & Sa da Costa J.(2013). An Introduction to 

Fractional Control. The Institution of Engineering and 

Technology. London, United Kingdom. 

Feldman Y., Puzenko A. & Ryabov Y. (2006). Dielectric 

Relaxation Phenomena [In:] Coffey W.T & Kalmykov Y.P. 

(eds.) Complex Materials Fractals, Diffusion, and 

Relaxation in Disordered Complex Systems. A Special 

Volume of Adv. in Chem. Phys. 133(A)., John Wiley & 

Sons, Inc., Hoboken, New Jersey,pp. 1-125. 

Gorenflo R., Loutchko I., Luchko Yu., (2002). Computation of 

the Mittag-Leffler function Ea,b(z) and its derivatives, Fract. 

Calculus Appl. Anal. 5, 491–518, erratum, (2003) 6, 111–

112. 

Gran R. J. (2007). Numerical Computing with Simulink. Vol.I. 

Creating Simulations. SIAM. Society for Industrial and 

Applied Mathematics, Philadelphia, USA. 

Haacke E.A., Brown R.B., Thompson M.R., Venkatesan R. 

(1999). Magnetic Resonance Imaging. Physical Principles  

and Sequence Design. J. Wiley & Sons, Inc., New York 

Chichester Weinheim Brisbane Singapore Toronto. 

Haubold H.J, Mathai A.M. & Saxena R.K. (2011). Mittag-

Leffler Functions and Their Applications. Review Article. J. 

Applied Mathematics Vol.2011, Article ID 298628, 51 

pages. (http://dx.doi.org/10.1155/2011/298628). 

Herrmann R. (2011). Fractional Calculus. An Introduction for 

Physicists. World Scientific Publishing Co. Pte. Ltd., 

Singapore. 

Hilfer R. Fractional Time Evolution, (2000). An Introduction 

to Fractional Calculus. [In:] Hilfer. R. (ed.). Applications of 

Fractional Calculus in Physics., World Scientific Publishing 

Co. Pte. Ltd., Singapore.87- 130. 

Hilfer R & Seybold H.J. (2006). Computation of the 

generalized Mittag-Leffler function and its inverse in the 

complex plane, Integral Transforms and Special Functions. 
17(9), 637–652. 

Junsheng D., Jianye A., Mingyu X. (2007). Solution of System 

of Fractional Differential Equations by Adomian 

Decomposition Method, Appl. Math. J. Chinese Univ. Ser. 

B., 22(1),7-12.  

Kaczorek T.(2011). Selected Problems of Fractional Systems 

Theory. Springer-Verlag Berlin Heidelberg. 

Kilbas A.A., Srivastava H.M., Trujillo J.J. (2006). Theory and 

Applications of Fractional Differential Equations., Elsevier 

B.V., Amsterdam, The Netherlands. 

http://dx.doi.org/10.1155/2011/298628


22 Zenon Matuszak 

 

Lang S. (2000). Linear Algebra.3-ed., Springer-Verlag, New 

York Inc. 

Lewis F.L., Syrmos V.L. (1995).Optimal Control.2-nd ed., 

John Wiley & Sons, Inc., New York. 

Madhu P.K., Kumar A. (1995). Direct Cartesian-space 

solutions of generalized Bloch equations in the rotating 

frame. J. Magn. Reson. A, 114, 201-211. 

Magin R., Feng X., Baleanu D., (2009) Solving the fractional 

order Bloch equation, Concepts in Magnetic Resonance Part 

A., 34A (1) 16–23. 

Metzler R., Klafter R. (2000).The Random Walk's Guide to 

Anomalous Diffusion: A Fractional Dynamics Approach. 

Physics Reports. 339, 1-77. 

Miller K.S, Ross B. (1993). An Introduction to the Fractional 

Calculus and Fractional Differential Equations. John Wiley 

& Sons, Inc., New York. 

Mital P.B, Kr U. & Prasad R.C. (2011). Modeling and 

Simulation of Fractional Order Chaotic Systems Using 

Matlab/Simulink. VSRD-IJEECE, 1(4), 220-224. 

Monje C.A, Chen YQ., Vinagre B.M, Xue D., Feliu V. (2010). 

Fractional-order Systems and Controls. Fundamentals and 

Applications. Springer-Verlag London Limited. 

Oldham K.B., Spanier J. (1974). The Fractional Calculus. 

Theory and Applications of Differentiation and Integration 

to Arbitrary Order. Academic Press, Inc., San Diego, 

California. 

Oustaloup A., Mathieu B., and Lanusse P. (1995). The 

CRONE control of resonant plants: application to a flexible 

transmission. Eur. J. of Control, 1(2), 113–121. 

(http://www.ims-bordeaux.fr/CRONE/toolbox). 

Podlubny, I. (1999). Fractional differential equations. 

Academic Press, San Diego. 

Podlubny I. (2002).Geometrical and physical interpretation of 

fractional integration and fractional differentiation. 

Fractional Calculus & Applied Analysis. 5(4),367–386. 
Podlubny I, Kacenak M. (2005). Mittag-Leffler function, 

[PodlubnyI.,online],http://www.mathworks.com/matlabcentr

al/fileexchange/8738. 

Petráš I. (2010). Modeling and numerical analysis of 

fractional-order Bloch equations, Computers and 

Mathematics with Application., 61, 341–356. 

Petráš I. (2011). Fractional-Order Nonlinear Systems. 

Modeling, Analysis and Simulation. Higher Education Press, 

Beijing and Springer-Verlag Berlin Heidelberg. 

Sabatier J., Agrawal O.P., Tenreiro-Machado J.A.(eds.) 

(2007). Advances in Fractional Calculus.Theoretical 

Developments and Applications in Physics and Engineering. 

Springer, Dordrecht, The Netherlands. 

Simulink® Getting Started Guide (1990–2013).The 

MathWorks, Inc. 

Slichter C.P. (1989). Principles of Magnetic Resonance. Third 

Enlarged and Updated Edition. Springer-Verlag Berlin 

Heidelberg New York London Paris Tokyo Hong Kong. 

Stanislavsky A.A. (2004). Probability Interpretation of the 

Integral of Fractional Order. Theoretical and Mathematical 

Physics., 138(3),418-431. 

Symbolic Math Toolbox™5, MuPAD® Tutorial.(1997–2008). 

The MathWorks, Inc. 

Torrey H.C. (1949). Transient nutations in nuclear magnetic 

resonance, Phys. Rev. 76, 1059-1068. 

Uchaikin V.V. (2013). Fractional Derivatives for Physicists 

and Engineers. Vol. I. Background and Theory. Springer-

Verlag, Heidelberg Dordrecht London New York. 

West B.J. (2006). Fractal Physiology, Complexity, and the 

Fractional Calculus. [In:] Coffey W.T & Kalmykov Y.P. 

(eds.) Complex Materials Fractals, Diffusion, and 

Relaxation in Disordered Complex Systems. A Special 

Volume of Adv. in Chem. Phys. 133(B), 1-92., John Wiley 

& Sons, Inc., Hoboken, New Jersey. 

Weilbeer M., ”Efficient Numerical Methods for Fractional 

Differential Equations and their Analytical Background”. 

PhD. Thesis, Carl-Friedrich-Gauß-Fakultät für Mathematik 

und Informatik der Technischen Universität Braunschweig. 

2005. 

Whittaker E.T, and G.N. Watson G.N (1965). A Course of 

Modern Analysis., Cambridge University Press, 

Cambridge,(polish. ed. PWN, Warszawa, 1967). 

Yariv A.(1975). Quantum Electronics. John Wiley & Sons, 

New York. 

Zhao C., Zhao Y. Luo L. (2011). Fractional Modeling Method 

Research on Education Evaluation, Journal of Software, 

6(5),901-907.  

 

 

http://www.ims-bordeaux.fr/CRONE/toolbox

